BIOMEDICAL ENGINEERING (EGRB)

EGRB 101. Biomedical Engineering Practicum I. 2 Hours.
Semester course; 2 lecture hours. 2 credits. Prerequisites: registration in biomedical engineering department and permission of course coordinator. This course involves the introduction of clinical procedures and biomedical devices and technology to biomedical engineering freshmen. Students will tour medical facilities, clinics and hospitals and will participate in medical seminars, workshops and medical rounds. Students will rotate among various programs and facilities including orthopaedics, cardiology, neurology, surgery, otolaryngology, emergency medicine, pharmacy, dentistry, nursing, oncology, physical medicine, ophthalmology, pediatrics and internal medicine.

EGRB 102. Introduction to Engineering. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: registration is restricted to biomedical engineering majors only. Introduces basic engineering principles in the context of biomedical topics, including electrical circuits and components such as resistors, capacitors, diodes, transistors, digital electronics and motors. Applications of biomedical systems including heart function, brain waves, human motion and skin responses are discussed. The laboratory introduces fundamental biomedical circuit testing and measurement and proper laboratory writing, with students required to analyze, build and test biomedical devices such as those involving ECG, EMG and Galvanic Skin Response.

EGRB 105. History of Medical Technology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Origins and recent advances in medical technologies including hearing aids, artificial knees, heart-lung machines, medical anesthesia devices and medical imaging systems such as CAT MRI.

EGRB 203. Statics and Mechanics of Materials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 201 and PHYS 207. Restricted to biomedical engineering majors. The theory and application of engineering mechanics applied to the design and analysis of rigid and deformable structures. The study of forces and their effects, including equilibrium of two- and three-dimensional bodies, stress, strain and constitutive relations, bending, torsion, shearing, deflection, and failure of materials.

EGRB 209. Applied Physiology for Biomedical Engineers. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: MATH 200 and MATH 201 or permission of instructor. Enrollment is restricted to biomedical engineering students. This course introduces the concepts of mathematical models and describes physiological systems using applied mathematics and engineering principles. Physiological systems will include a comprehensive study of muscle, nervous, cardiovascular, respiratory, endocrine and musculoskeletal, beginning with applied biophysical concepts in cell anatomy and physiology leading into the various physiological systems. This course also incorporates a laboratory that uses the knowledge-based tools gained through lecture and implements them in practice using exercises in biochemical and physiological calculations, osmosis, electrical network simulation of diffusion, EEG, blood pressure, ECG, spirometry and musculoskeletal anatomy.

EGRB 215. Computational Methods in Biomedical Engineering I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 201 and sophomore standing in biomedical engineering. Corequisite: MATH 301, MATH 310 or permission of instructor. The goal of this course is to enhance students’ software skills for subsequent biomedical engineering courses and laboratories, as well their careers. The course covers the basic fundamentals of programming in MATLAB, as well as data analysis of biomedical data. An important component of this course is developing problem-solving skills.

EGRB 301. Biomedical Engineering Design Practicum. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRB 101, EGRB 102, EGRB 203, EGRB 215, EGRE 206 (or equivalent), each with a minimum grade of C. Restricted to students with junior standing in the biomedical engineering program. Explores the professional and ethical responsibilities of a biomedical engineer. Emphasis will be placed on design issues associated with biomedical engineering, teamwork, regulatory issues and human and animal subjects.

EGRB 303. Biotransport Processes. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHIS 309 and PHIS 310 (or equivalents); EGRB 203; MATH 301; and MATH 310. Course involves the study of fundamental principles of fluid mechanics and mass transport as well as application of these principles to physiological systems. Fluid mechanics principles covered will include conservation of mass and momentum, laminar and turbulent flow, Navier-Stokes equations, dimensional analysis, Bernoulli’s equation, and boundary layer theory. Mass transport principles will include diffusion, convection, transport in porous media and transmembrane transport. Concepts will be applied to studying diffusion in biological tissues, electrolyte transport, vascular transport, blood flow mechanics and cardiovascular flow. The course will also cover organ-specific transport processes, including oxygen transport in the lungs and blood and mass transport in the kidney.

EGRB 307. Biomedical Instrumentation. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: EGRB 102, EGRB 215 and EGRE 206. A study of the physical principles, design and clinical uses of biomedical instrumentation. Analysis and design of low frequency electronic circuits, which are most frequently used in biomedical instruments, will be conducted. Analysis of biosensors, biopotential electrodes, the measurements of biopotential signals including electrocardiogram, electroencephalogram and electromyogram, blood pressure, blood flow, and respiratory system will be conducted. Laboratory work on basic biomedical electronics and instrumentation will be performed.

EGRB 308. Biomedical Signal Processing. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: EGRB 102 and EGRB 215; MATH 301 and MATH 310; PHIS 309. Explores the basic theory and application of digital signal processing techniques related to the acquisition and processing of biomedical and physiological signals including signal modeling, AD/DA, Fourier transform, Z transform, digital filter design, continuous and discrete systems.
EGRB 310. Biomechanics. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: EGRB 203, EGRB 215 and PHIS 309. Corequisites: MATH 301 and MATH 310. A study of the forces, stresses and strains in the human body during normal function. Emphasis is placed on the mechanics of various components of the body including hard (bone) and soft (skin, vessels, cartilage, ligaments, tendons) tissues from a structure-function perspective. Stress and strain relationships for these biomaterials will be analyzed based upon the fundamentals of engineering mechanics. In addition, the distinctive features of biological materials will be studied with respect to their differences from nonliving materials and elaborated upon in laboratory exercises using material evaluation protocols.

EGRB 315. Computational Methods in Biomedical Engineering II. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: EGRB 102, EGRB 215, MATH 301 and MATH 310. The goals of this course are to: (1) prepare software skills for using LabVIEW for collecting real-time data from sensors, process information and control actuators and (2) prepare mechanical design skills using SolidWorks for designing structures and mechanisms, as well as performing simple analyses for assessing mechanical design criteria.

EGRB 401. Biomedical Engineering Senior Design Studio. 3 Hours.
Semester course; 9 laboratory hours. 3 credits. Prerequisites: EGRB 101, EGRB 102, EGRB 215, EGRB 301, EGRB 303, EGRB 307, EGRB 308, EGRB 310, EGRB 315 and EGRB 427, each with a minimum grade of C. Enrollment restricted to students with senior standing in the Department of Biomedical Engineering or by permission of instructor. A minimum of nine laboratory hours per week is dedicated to the design, development and execution of the senior design (capstone) project for biomedical engineering under the direction of a faculty research adviser in biomedical engineering or an acceptable substitute as determined by the course coordinator. Tasks include team meetings (for team projects), brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects. Monthly progress reports are due to the research adviser and course coordinator. At the end of the first semester, each team will orally present to the BME faculty project background information and discuss potential technical approaches and deliverables.

EGRB 402. Biomedical Engineering Senior Design Studio. 3 Hours.
Semester course; 9 laboratory hours. 3 credits. Prerequisites: Completion of EGRB 401 with a minimum grade of C. A minimum of nine laboratory hours per week is dedicated to the design, development and execution of the senior design (capstone) project for biomedical engineering under the direction of a faculty research adviser in biomedical engineering or an acceptable substitute as determined by the course coordinator. Tasks include team meetings (for team projects), brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects. Monthly progress reports are due to the research adviser and course coordinator. Final project reports must be submitted before the end of the semester. All design teams must participate in the School of Engineering public poster session. At the end of the semester and conclusion of the two-semester design process, teams must present their final designs and deliverables before the BME faculty.

EGRB 403. Tissue Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHIS 309 or permission of instructor. Enrollment restricted to students with junior standing in engineering. Study of the design, development and clinical application of tissue engineered components for use in the human body. Analysis of biology, chemistry, material science, engineering, immunology and transplantation as pertains to various tissue engineered components including blood vessels, bone, cartilage, pancreas, liver and skin.

EGRB 405. Finite Element Analysis in Solid Mechanics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRB 310 and MATH 301. Finite element analysis as presented in this course is a numerical procedure for solving continuum mechanics problems that cannot be described by closed-form mathematical solutions. Emphasis will be placed on understanding the theoretical basis for the method, using a commercial software program, and understanding the volume of information that can be generated. Applications to both one- and two-dimensional problems in solid mechanics and biomechanics will be explored.

EGRB 406. Artificial Organs. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHIS 309, EGRB 303, EGRB 307 and EGRB 310, or permission of instructor. This course explores the design, operating principles and practices regarding artificial organs and their use in the human body. Analysis of dialysis systems for kidney replacement, artificial hearts and heart assist devices, cardiac pacemakers, sensory organ assist and replacement devices, and artificial liver and pancreas devices. Design aspects, legal ramifications, regulatory issues and clinical implantation issues will be addressed.

EGRB 407. Physical Principles of Medical Imaging. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: junior standing in the School of Engineering and PHYS 208. A study of the physical principles and basic clinical uses of medical imaging. Analysis of radiation and interaction of radiation, generation and control of X-rays, X-ray diagnostic methods, X-ray computed tomography (CT), magnetic resonance imaging (MRI) and ultrasonic imaging will be conducted. Basic principle of radionuclide imaging also will be introduced.

EGRB 408. Advanced Biomedical Signal Processing. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGRB 308. This course will briefly review the basic theory of discrete-time signal processing techniques in biomedical data processing. Advanced signal processing techniques including adaptive signal processing, wavelets, spectral estimation and multirate signal processing will be employed. Specific examples utilizing electrocardiogram (ECG) and other biological signals are provided. Topics covered are alternate phenomena in biological systems, late potential in ECG, intrapotential in ECG and coherence analysis.

EGRB 409. Microcomputer Applications in Biomedical Engineering. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: EGRB 307. Covers microcomputer applications (hardware and software) as applied to biomedical science and biomedical engineering. Basic hardware components of a microcomputer are discussed with particular reference to configurations needed for analyzing biomedical events. Software applications including data encoding, data storage, graphical interfaces and real-time processing are explored for analysis of physiological and biomedical signals. Students will develop algorithms using LabView and MatLab to solve problems in biomedical engineering in the laboratories.
EGRB 410. Cellular Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHIS 309 and PHIS 310, both with minimum grades of C. This course will be a detailed study of the structure and function of the cell from an engineering perspective. Fundamental molecular biology, cell biology and biochemistry topics (cellular structure, signal transduction, cell adhesions, cytoskeleton) will be introduced. Engineering principles (kinetics, transport, mechanics, thermodynamics, electrochemical gradient) will be applied to these topics. Emphasis is placed on methods to disrupt, enhance or mimic in vivo cellular function in biomedical applications.

EGRB 411. Cell Mechanics and Mechanobiology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRB 310 and EGRB 410 with minimum grades of C or permission of instructor. Focusing on cellular-extracellular matrix interactions, students will gain a quantitative understanding of the way cells detect, modify and respond to the physical properties within the cell environment. Coverage includes the mechanics of single-molecule polymers, polymer networks, two-dimensional membranes, whole-cell mechanics and mechanobiology. Mechanobiology topics include cancer and development, pulmonary system, cardiovascular system, and the nervous system. Students will gain understanding of techniques in cellular manipulation and quantification of cellular forces.

EGRB 412. Regenerative Engineering and Medicine. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHIS 309 or equivalent with minimum grade of C. Students will apply fundamental concepts of cell and molecular biology, biochemistry, medicine and pathology, as well as material science and engineering principles to design novel strategies for cell and drug delivery, tissue engineering and regenerative medicine. Emphasis will be placed on designs and methods to solve current complex biomedical problems.

EGRB 413. Computational and Experimental Models of Cellular Signal Transduction. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRB 215 and EGRB 410 with minimum grades of C. Students will study the process by which an extracellular protein binding event is transduced and interpreted as an incoming signal into a cell. Students will learn the biology of cellular signal transduction and will also learn how to apply computational models and experimental techniques to predict and investigate these pathways. Students will follow the course of a protein within a signal transduction cascade, from binding to a receptor, activating intracellular pathways, inducing new transcription and protein within a signal transduction cascade, from binding to a receptor, activating intracellular pathways, inducing new transcription and translation and targeting of the protein to its final location. Students will develop MATLAB-based mathematical models to predict signal transduction dynamics, and then will study experimental techniques that are used to both disrupt and measure signal transduction.

EGRB 420. Assistive Technology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRE 206 or equivalent; EGRB 310; and PHIS 309 and PHIS 310 or equivalents; or permission of instructor. Enrollment is restricted to biomedical engineering students or with permission of instructor. This course explores the principles and practice regarding the development of assistive technology for individuals with disabilities. The course will address the human user considerations that need to be taken into account in developing technology for individuals with different disabilities or multiple disabilities. It will also provide a general overview of current technology and software algorithms used. The four main areas of assistive technology that will be considered are for the deaf and hard of hearing, individuals who are blind and visually impaired, individuals with cognitive impairments, and individuals with motor impairments.

EGRB 421. Human Factors Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHIS 309 and PHIS 310 (or equivalents), and EGRB 310. This course explores the principles and practices regarding ergonomics and human factors engineering and the interaction of biomedical engineering with human function. Analysis of the functions of the human body regarding motion, sensory mechanisms, cognition and interaction with the environment will be included. Interactions of the human body with technology, workplaces, equipment and computers will be examined. Design of workplaces for optimal human performance will be discussed. Analysis of the design and arrangement of controls and displays will be covered.

EGRB 422. Human Performance Measurement Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRB 307, EGRB 308, EGRB 421 and PHIS 309 or equivalent, each completed with a minimum grade of C, or by permission of instructor. Enrollment is restricted to biomedical engineering majors or with permission of instructor. Course explores the principles and practices of human performance measurement including direct and indirect measurement techniques and analysis. Course addresses the subjective, psychophysical and physiological methods related to the measurement, analysis and quantification of human performance.

EGRB 423. Rehabilitation Engineering and Prostheses. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRB 203, PHIS 309 and PHIS 310, or permission of instructor. Enrollment restricted to biomedical engineering majors or with permission of instructor. This course explores the principles and practices regarding the development of rehabilitation therapy devices and prostheses. The course will further address the human user and factors that must be considered when developing devices and engineering solutions for individuals with different therapy and prosthetic needs. The course will also provide a general overview of current technologies and the engineering principles behind these designs.

EGRB 427. Biomaterials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: junior standing in biomedical engineering, PHIS 309 and 310, or permission of instructor. Principles of materials science as it relates to the use of materials in the body. Characterization of biomaterials. Study of the properties of biomaterials used as implants, prostheses, orthosis and as medical devices in contact with the human body. Analysis of physical, chemical, thermal and physiological response factors associated with materials and implant devices used in the human body.

EGRB 491. Special Topics. 1-4 Hours.
Semester course; 1-4 lecture hours. 1-4 credits. May be repeated with different topics. Advanced study of a selected topic in biomedical engineering. See the Schedule of Classes for specific topics to be offered each semester and prerequisites, corequisites or restrictions.

EGRB 506. Artificial Organs. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHIS 501 or permission of instructor. This course explores the design, operating principles and practices regarding artificial organs and their use in the human body. Analysis of dialysis systems for kidney replacement, artificial hearts and heart-assist devices, artificial heart valves, cardiac pacemakers, and sensory organ-assist and replacement devices. Design aspects, legal ramifications, regulatory issues and clinical implantation issues will be addressed.

EGRB 507. Biomedical Electronics and Instrumentation. 3 Hours.
Semester course; 2 lecture and 2 laboratory hours. 3 credits. Fundamental principles and applications of electronics and instrumentation as related to biomedical sciences.
EGRB 509. Microcomputer Technology in the Biomedical Sciences. 3 Hours. Semester course; 2 lecture and 2 laboratory hours. 3 credits. Microcomputer applications to the acquisition and manipulation of data in the biomedical laboratory.

EGRB 511. Fundamentals of Biomechanics. 3 Hours. Semester course; 3 lecture hours. 3 credits. Prerequisites: Calculus and ordinary differential equations (MATH 200-201, MATH 301 or equivalent). Presents basic mechanical properties of materials, describes methods of material testing and introduces techniques for analyzing the solid and fluid mechanics of the body. Considers topics such as stress/strain relationships, particle mechanics, and force balances.

EGRB 513. Cellular Signal Processing. 3 Hours. Semester course; 3 lecture hours. 3 credits. In this course students will study the process by which an extracellular protein binding event is transduced and interpreted as an incoming signal into a cell. Students will learn the biology of cellular signal transduction, as well as how to apply computational models and experimental techniques to predict and investigate these pathways. The course will follow the course of a protein within a signal transduction cascade, from binding to a receptor, activating intracellular pathways, inducing new transcription and translation, and targeting of the protein to its final location. Students will develop MATLAB-based mathematical models to predict signal transduction dynamics and then study experimental techniques that are used to both disrupt and measure signal transduction.

EGRB 517. Cell Mechanics and Mechanobiology. 3 Hours. Semester course; 3 lecture hours. 3 credits. Prerequisites: previous course in biomechanics and a previous cell biology course, or permission of instructor. Graduate-level students will gain a quantitative understanding of cellular mechanics and the way cells detect, modify and respond to the physical properties within the cell environment. Students will gain a thorough understanding of relevant primary literature and mathematical models. Both experimental and theoretical approaches toward cell mechanics and mechanobiology will be addressed. Emphasis will be placed upon cells from the nervous, cardiovascular and pulmonary systems. Cancer cell mechanotransduction will also be addressed.

EGRB 591. Special Topics in Biomedical Engineering. 1-4 Hours. Semester course; 1-4 lecture hours. 1-4 credits. Enrollment is restricted to students with senior or graduate standing in the School of Engineering or by permission of the instructor. Lectures, tutorial studies, library assignments in selected areas of advanced study or specialized laboratory procedures are not available in other courses or as part of research training. See the Schedule of Classes for special topics to be offered each semester.

EGRB 601. Numerical Methods and Modeling in Biomedical Engineering. 4 Hours. Semester course; 4 lecture hours. 4 credits. Enrollment restricted to graduate students. The goal of this course is to develop an enhanced proficiency in the use of computational methods and modeling, to solve realistic numerical problems in advanced biomedical engineering courses and research, as well careers. The course will discuss and students will develop advanced technical skills in the context of numerical data analysis and modeling applications in biology and medicine. An important component of this course is developing problem-solving skills and an understanding of the strengths and weaknesses of different numerical approaches applied in biomedical engineering applications.

EGRB 602. Biomedical Engineering Systems Physiology. 4 Hours. Semester course; 4 lecture hours. 4 credits. Prerequisite: EGRB 601. Enrollment restricted to graduate students. Biomedical engineering requires a foundational understanding of organ systems in the body as well as an advanced understanding of how to apply engineering principles and mathematical models to those systems. In this course, students will learn the basic physiology of major organ systems while also identifying and implementing mathematical modeling approaches to simulate and better understand these organ systems. Students will also learn how to apply engineering concepts, such as fluid dynamics, thermodynamics, structural mechanics and mass transport to better understand organ system physiology.

EGRB 603. Biomedical Signal Processing. 3 Hours. Semester course; 3 lecture hours. 3 credits. Prerequisites: Calculus and differential equations (MATH 301 or equivalent), including Laplace and Fourier Transforms. Explores theory and application of discrete-time signal processing techniques in biomedical data processing. Includes discrete-time signals and systems, the Discrete/Fast Fourier Transforms (DFT/FFT), digital filter design and implementation, and an introduction into processing of discrete-time random signals.

EGRB 604. Biomechanics. 3 Hours. Semester course; 3 lecture hours. 3 credits. Prerequisite: MATH 201, MATH 301 or permission of instructor. Presents fundamental principles and conservation laws governing solid and fluid mechanics which are then applied to the mechanics of living systems. This enables an understanding of normal biomechanical function as compared with variations present in dysfunctional states. The objectives of this course are to introduce the student to the general mechanical function of a variety of biological materials and structures, linkage to structure-function relationships, and how these can be studied and represented mathematically.

EGRB 610. Microprocessor Interfacing for Biomedical Instrumentation. 3 Hours. Semester course; 2 lecture and 2 laboratory hours. 3 credits. Prerequisite: EGRB 509 or permission of instructor. Principles and applications of microprocessor interfacing for biomedical instrumentation. Topics include microprocessor architecture, assembly language, programming and debugging techniques, EPROM programming and bus structure and interfacing.

EGRB 611. Cardiovascular Dynamics. 3 Hours. Semester course; 3 lecture hours. 3 credits. Pre- or corequisite: PHIS 501 or PHIS 502. Analyzes and models the cardiovascular system in health and disease through studies on the properties of heart and vascular tissue, the mechanics of blood flow and the application of engineering methods to the diagnosis and treatment of cardiovascular pathologies.

EGRB 612. Structural Biomechanics. 3 Hours. Semester course; 3 lecture hours. 3 credits. Prerequisite: EGRB 511. Treats mechanical functions of the human body as an engineering structure used to assist and supplement these functions. Includes movement of the musculoskeletal system, joint reaction forces, stresses and strains developed within bones, function and design of orthopedic prostheses and braces, effect of vibration and impact on the body, mathematical and other models of the body.
EGRB 613. Biomaterials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: Undergraduate material science or permission of the instructor. Primary and secondary factors determining the performance of materials used for implants in the human body. Topics will include metallurgy of stainless steel, cobalt-chromium alloys, titanium alloys, biocompatibility of implant materials, mechanical and physical properties of biomaterials, corrosion of biomaterials and medical polymers.

EGRB 615. Medical Imaging. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: Calculus and college physics. Covers the physical principles and techniques of medical imaging modalities such as ultrasound, X-ray and nuclear magnetic resonance. Includes generation and detection of images, consideration of system design and qualitative image analysis.

EGRB 616. Cell Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHIS 501. This course will cover the cell and its engineering principles with an emphasis on current research techniques. Topics covered include the organization and structure of the cell, cell signaling, and application of cell biology to biomedical research. Advanced methods are taught enabling students to interpret and present findings from primary literature.

EGRB 618. Regenerative Engineering and Medicine. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: undergraduate or graduate level physiology or permission of instructor. Study of the design, development and clinical application of regenerative medicine strategies. Analysis of molecular and cellular engineering, biomaterials and tissue engineering, stem cell biology, and immunology as they pertain to pre-translational and clinically used regenerative medicine therapies, as well as the regulatory and ethical considerations of their implementation.

EGRB 619. Computational and Experimental Models of Cellular Signal Transduction. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Corequisite: EGRB 616 or permission of instructor. In this course students will study the process by which an extracellular protein binding event is transduced and interpreted as an incoming signal into a cell. Students will learn the biology of cellular signal transduction, as well as how to apply computational models and experimental techniques to predict and investigate these pathways. The course will follow the course of a protein within a signal transduction cascade, from binding to a receptor, activating intracellular pathways, inducing new transcription and translation, and targeting of the protein to its final location. Students will develop MATLAB-based mathematical models to predict signal transduction dynamics and then study experimental techniques that are used to both disrupt and measure signal transduction.

EGRB 635. Modeling for Biomedical Engineers. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: Permission of instructor. Applies mathematical modeling techniques to biomedical systems. Covers linear and nonlinear systems, deterministic and random systems, large systems, ecosystems, numerical techniques, graph theoretical approaches and simulation packages. Utilizes examples of biochemical, physiological and pharmacokinetic systems throughout.

EGRB 670. Advanced Molecular Modeling Theory and Practice. 3 Hours.
Semester course; lecture and laboratory hours. 3 credits. Prerequisite: MEDC 641, EGRB 641 or permission of the instructor. Examines the principles and applications of computational chemistry and molecular graphics to current problems in drug design. Lectures focus on the application of specific computational methods and techniques to solve problems in drug/molecular design. Workshop sessions provide hands-on experience using state-of-the-art hardware and software for molecular modeling.

EGRB 690. Biomedical Engineering Research Seminar. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Presentation and discussion of research reports and topics of current interest to the program seminar or special group seminar.

EGRB 691. Special Topics in Biomedical Engineering. 1-4 Hours.
Semester course; 1-4 credits. Lectures, tutorial studies, library assignments in selected areas of advance study, or specialized laboratory procedures not available in other courses or as part of the research training.

EGRB 697. Directed Research in Biomedical Engineering. 1-15 Hours.
Semester course; 1-15 credits. Research leading to the M.S. degree or elective research projects for other students.