NANO   570. Nanoscale Physics. 3 Hours.

Semester course; 3 lecture hours. 3 credits. This course builds a fundamental understanding of the unique properties of materials with nanoscale dimensions and emphasizes the physics and thermodynamics underlying several phenomena encountered in nanotechnology. The course starts from a general description of size effects and then moves to describe the fundamental aspects of nanocluster physics such as magic numbers, and concludes with a description of the theory and fabrication of nanoscale devices. Suggested background: PHYS   380.

NANO   571. Nanoscale Chemistry. 3 Hours.

Semester course; 3 lecture hours. 3 credits. This course builds a fundamental understanding of the unique chemical properties of materials with nanoscale dimensions and emphasizes the synthetic chemistry encountered in nanotechnology. The course starts from a description of crystallization and growth models and concludes with discussion of several different synthetic approaches of nanoscale systems. Suggested background: PHYS   380.

NANO   650. Experimental Techniques in Nanoscience I. 1.5 Hour.

Semester course; 1.5 lecture hours. 1.5 credits. The course will focus on a variety of instrumental methods and techniques commonly applied to the characterization of nanomaterials. Particular attention will be placed on the theory behind the measurements, instrument safety, sample preparation and data analysis/interpretation. Topics will focus on X-ray, optical and electron characterization techniques. Suggested background: CHEM   409 or PHYS   450.

NANO   651. Experimental Techniques in Nanoscience II. 1.5 Hour.

Semester course; 1.5 lecture hours. 1.5 credits. The course will focus on a variety of instrumental methods and techniques commonly applied to the characterization of nanomaterials. Particular attention will be placed on the theory behind the measurements, instrument safety, sample preparation and data analysis/interpretation. Topics will cover morphological and physical properties characterization tools. Suggested background: CHEM   409 or PHYS   450.

NANO   660. Theoretical Studies of Nanostructures. 3 Hours.

Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM 660 or PHYS   580. Introduction to theoretical techniques needed to study electronic and magnetic properties of nanostructures. Covers theoretical first-principles approaches to study electronic structure of molecules, clusters, nanostructure materials and condensed matter, including determination of geometry and electronic states. Will also cover magnetic properties in reduced sizes, including quantum effects and the model Hamiltonians. A brief discussion of effective interatomic molecular potentials and their application in monte-carlo and molecular dynamics methods will be included, as well as a discussion of application of nanomaterials to medical areas. Suggested background: CHEM 660 or PHYS   580.

NANO   661. Computational Nanoscience. 3 Hours.

Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM   511, CHEM   512 or CHEM   612. Open only to students admitted to the Nanoscience and Nanotechnology Ph.D. program. Introduction to computational methods used to model true nanostructures containing more than 10<sup>5</sup> atoms and whose assembly, morphology and properties are governed by noncovalent interactions. Structural and dynamic aspects of the computational methods will be covered throughout the course. Applications to nanotechnology and environmental cleanup will be covered through special topics assignments during the semester and discussed by the end of the course.

NANO   690. Research Seminar in Nanoscience and Nanotechnology. 1 Hour.

Semester course; 2 lecture hours. 1 credit. May be repeated for credit. In addition to reports presented by staff and visiting lecturers, current problems and developments in nanoscience and nanotechnology are discussed. Graded S/U/F.

NANO   692. Nanoscience Seminar Presentation. 1 Hour.

Semester course; 2 lecture hours. 1 credit. May be repeated for credit. In addition to reports presented by students, staff and visiting lecturers, current problems and developments in chemistry are discussed.