DEPARTMENT OF CHEMISTRY

Maryanne Collinson, Ph.D.
Professor and chair

chemistry.vcu.edu (https://chemistry.vcu.edu/)

The Department of Chemistry offers programs leading to the Bachelor of Science, Master of Science and Doctor of Philosophy degrees. For undergraduate students, the Bachelor of Science offers concentrations in chemical science, professional chemist, professional chemist with honors, biochemistry and chemical modeling.

For graduate students, the Master of Science and Doctor of Philosophy programs provide opportunities for concentrated study in analytical, inorganic, organic or physical chemistry, or chemical physics. A plan of study is worked out for each student to ensure a sound basis for research. In keeping with the university's commitment as an urban institution, the department also offers part-time programs leading to these degrees.

Refer to the department's website (https://chemistry.vcu.edu/) for more information.

Admission requirements for graduate study

In addition to the general requirements for admission to graduate programs in the Graduate School and the College of Humanities and Sciences, students are expected to have a bachelor's degree from an accredited college or university with 30 semester credits in chemistry. Admission on a provisional basis is possible for a student temporarily lacking this expected chemistry background. Acceptance is based upon undergraduate performance, satisfactory scores on the GRE and letters of recommendation.

Graduate students in the Department of Chemistry may receive financial support via teaching or research assistantships or fellowships. Application forms and instructions for applying to all graduate programs are available on the Graduate School website (http://www.graduate.vcu.edu).

General degree requirements for graduate programs

Entering graduate students are required to take proficiency examinations in analytical, inorganic, organic and physical chemistry. These examinations are at the level of sound undergraduate courses and are offered preceding the start of the school's fall and spring semesters. These tests are used to evaluate the student's strengths and weaknesses, and the student's program is planned accordingly.

- Chemical Biology, Doctor of Philosophy (Ph.D.) with a concentration in biochemistry (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/chemical-biology-phd-concentration-biochemistry/)
- Chemical Biology, Doctor of Philosophy (Ph.D.) with a concentration in biology (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/chemical-biology-phd-concentration-biology/)
- Chemical Biology, Doctor of Philosophy (Ph.D.) with a concentration in biology of cancer (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/chemical-biology-phd-concentration-biology-cancer/)
- Chemical Biology, Doctor of Philosophy (Ph.D.) with a concentration in bioorganic chemistry (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/chemical-biology-phd-concentration-bioorganic-chemistry/)
- Chemistry, Doctor of Philosophy (Ph.D.) (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/chemistry-phd/)
- Chemistry, Doctor of Philosophy (Ph.D.) with a concentration in chemical physics (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/chemistry-phd-concentration-chemical-physics/)
- Chemistry, Master of Science (M.S.) (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/chemistry-ms/)
- Nanoscience and Nanotechnology, Doctor of Philosophy (Ph.D.) (http://bulletin.vcu.edu/graduate/college-humanities-sciences/chemistry/nanoscience-nanotechnology-phd/)
- Chemistry (CHEM) (p. 1)
- Chemical biology (CHEB) (p. 3)
- Nanotechnology (NANO) (p. 4)

Chemistry

CHEM 504. Advanced Organic Chemistry I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. An integrated study of certain free radical and ionic reaction mechanisms with emphasis on electronic effects and stereochemical consequences of these reactions.

CHEM 506. Introduction to Spectroscopic Methods in Organic Chemistry. 1.5 Hour.
Half-semester course; 3 lecture hours. 1.5 credits. Introduction to mass spectrometry, infrared and 1D 1H and 13C NMR spectroscopy, theory and practice in the elucidation of organic structures.

CHEM 507. Introduction to Natural Products. 3 Hours.
Semester course; 3 lecture hours. 3 credits. A study of the biosynthetic origins, isolation, structure elucidation and uses of naturally occurring organic compounds. Emphasis is placed upon three major classes of compounds, carboaromatics, terpenes and alkaloids.

CHEM 510. Atomic and Molecular Structure. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 301 and PHYS 208. Survey of the pertinent aspects of quantum mechanics. Line spectra, atomic structure and molecular bonding.

CHEM 511. Chemical Thermodynamics and Kinetics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The concepts and principles of thermodynamics and their application to chemical problems. The rates and mechanisms of chemical reactions including collision and transition state theories.

CHEM 512. Applied Molecular Modeling. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Atomic and coarse-grained force fields. Principles behind molecular simulations. Molecular dynamics and Monte Carlo approaches to problems in chemistry, molecular physics, biophysics and nanoscience. Thermodynamic and transport properties. Free energy calculations and rare event dynamics. Hands-on introduction to basic programming and operating systems. Suggested background: physical chemistry (CHEM 303) or thermodynamics with elements of statistical mechanics (PHYS 340, CHEM 511 or CHEM 612).
CHEM 520. Advanced Inorganic Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The application of modern physical techniques for the determination of the symmetry, molecular structure, bonding and reaction mechanisms of inorganic compounds.

CHEM 532. Advanced Analytical Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Theories and principles of thermodynamics and kinetics relevant to analytical methods, including acid-base, redox, and metal complexation equilibria, nonaqueous systems, kinetics and an introduction to surface chemistry.

CHEM 550. Introduction to Polymer Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. A study of macromolecular compounds that includes classifications, methods of preparation, mechanisms, stereochemistry and applications. Physical characterizations, such as structure and property correlations, kinetics, thermodynamics, and molecular weight determinations are emphasized.

CHEM 580. Mechanical Properties of Plastics and Polymers. 3 Hours.
Semester course; 3 lecture hours. 3 credits. This course provides a link between the more practical aspects of plastics and the fundamental properties of the polymers from which they are made. Topics covered deal with the structure of polymers with emphasis on relationships with mechanical properties; rubber elasticity; the glass transition and other secondary transitions; time and temperature dependency; yield and fracture; crystallization and morphology; influence of polymer processing on mechanical properties.

CHEM 591. Topics in Chemistry. 1-6 Hours.
Semester course; variable hours. 1-6 credits per semester. Maximum total of 9 credits for all topics courses. An in-depth study of a selected topic in chemistry. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

CHEM 604. Advanced Organic Chemistry II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. An integrated study of the mechanism and stereochemistry of organic reactions and their application to organic synthesis. Emphasis is placed on addition and condensation reactions, carbanions, carbines, and other reactive intermediates.

CHEM 605. Physical Organic Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The theory and application of physical methods in the study of the behavior of organic compounds. Topics covered include homogeneous kinetics, equilibria, acid-base catalysis, and the quantitative correlation of structure and reactivity as they apply to the understanding of the mechanisms of organic reactions.

CHEM 606. Advanced Spectroscopic Methods in Organic Chemistry. 1.5 Hour.
Half-semester course; 3 lecture hours. 1.5 credits. Prerequisite: CHEM 506 or permission of instructor. Advanced spectroscopic techniques including 2-D, multinuclear and solid state NMR, theory and practice in the education of organic structures.

CHEM 610. Applied Quantum Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Quantum mechanics applied to chemical problems in UV, IR and NMR spectroscopy and the electronic structures of atoms and molecules; development of the self-consistent field equations. Suggested background: CHEM 510.

CHEM 611. Molecular Spectroscopy. 3 Hours.
Semester course; 3 lecture hours. 3 credits. This course teaches the interaction of radiation and molecules; the rotation, vibration and electronic motion of molecules; molecular spectra and recent developments in laser spectroscopy. Suggested background: CHEM 510.

CHEM 612. Modern Statistical Mechanics: Fundamentals and Applications. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Fundamental topics in modern equilibrium and non-equilibrium statistical mechanics, with applications to selected chemical, physical and biological systems. Suggested background: CHEM 510 and 511.

CHEM 615. Chemical Thermodynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The study of the laws of thermodynamics and their application to pure phases, solutions and changes in state.

CHEM 620. Advanced Inorganic Chemistry I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The application of modern physical techniques for the determination of the symmetry, molecular structure, bonding and reaction mechanisms of inorganic compounds.

CHEM 621. Advanced Inorganic Chemistry II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. A coordinated study of synthetic methods, stereochemistry and reaction mechanisms including catalysis of inorganic, organometallic and bioinorganic compounds. Suggested background: CHEM 620.

CHEM 622. Solid State and Materials Chemistry. 1.5 Hour.
Modular course; 3 lecture hours. 1.5 credits per module. Presents the theory and application of electroanalytical techniques including cyclic voltammetry, potential step methods and microelectrode voltammetry. Suggested background: CHEM 409 or equivalent experience.

CHEM 631. Separation Science. 1.5 Hour.
Modular course; 3 lecture hours. 1.5 credits per module. Students discuss theories and principles of separation science as applied to chemical problems with emphasis on current techniques, instrumentation and applications. Suggested background: CHEM 409 or equivalent experience.

CHEM 632. Chemometrics. 1.5 Hour.
Modular course; 3 lecture hours. 1.5 credits per module. Computer methods for experimental design and data analysis of spectroscopic, electrochemical and chromatograph data. Topics include sampling theory, detection limits, curve resolution, Fourier transform-based instruments and factor analysis. Suggested background: CHEM 409 or equivalent experience.

CHEM 633. Mass Spectrometry. 1.5 Hour.
Modular course; 3 lecture hours. 1.5 credits per module. Topics include mass spectrometry ionization methods, mass analyzers, theory and applications for ion structure determination. Suggested background: CHEM 409 or equivalent experience.
CHEM 634. Surface Science. 1.5 Hour.
Modular course; 3 lecture hours. 1.5 credits per module. Topics include types of surfaces requiring surface analysis, electron-surface scattering (AES, UPS, XPS, HREELS, LEED, STM, SEM), photon-surface scattering (IR, NMR, EXAFS), molecule/ion-surface scattering (ISS, RMBS), chemisorption techniques and work function measurements. Suggested background: CHEM 409 or equivalent experience.

CHEM 635. Spectrochemical Analysis. 1.5 Hour.
Modular course; 3 lecture hours. 1.5 credits per module. Topics include instrumental components, such as lasers, photomultipliers, array detectors, monochromators, lock-in and boxcar detection, waveguides and optical fibers, atomic spectroscopic methods, fluorescence, Raman and circular dichroism spectroscopies. Suggested background: CHEM 409 or equivalent experience.

CHEM 636. Chemical Sensors and Biosensors. 1.5 Hour.
Semester course; 1.5 lecture hours. 1.5 credits. Prerequisite: CHEM 409. The goal of this course is to teach “structure-function” relationships responsible for the analytical response of sensors and biosensors based on chemical transduction. The material covered is intended to provide a connection between the chemical structure of sensors and the transduction mechanisms that produce a response signal, as well as the physicochemical factors that affect performance. The content provided will be from different textbooks but complemented with illustrative examples from the research literature. Note: This is a half-semester course.

CHEM 637. Electrochemistry Applications. 1.5 Hour.
Semester course; 1.5 lecture hours. 1.5 credits. Prerequisite: CHEM 409. The goal of this course is to teach applications of electrochemistry in science and technology, thus complementing the principles covered in CHEM 630. The course content is intended to enhance understanding of the practical aspects of electrochemistry, so students can appreciate the impact of this field in the real world. General topics include energy conversion and storage, electrocatalysis, corrosion, electroplating, and concepts for simulating electrode processes. Note: This is a half-semester course.

CHEM 638. Scanning Electrochemical Microscopy. 3 Hours.
Semester course; 1 lecture and 3 laboratory hours. 3 credits. Prerequisite: CHEM 409. Scanning electrochemical microscopy is a scanning probe technique that generates topographic images of surfaces immersed in liquids. Besides imaging, SECM allows quantitative characterization of chemical processes between tip and the scanned surface including nonconducting ones, thus expanding its applicability to biological substrates. The course is structured around experiments that exemplify applications of SECM and allows experiential learning on the principles and measuring capabilities of SECM. Each lecture focuses on a particular experiment that can be performed in one or two lab sessions. The goal of the course is to provide an ecosystem of experimental methods that graduate students can directly apply in their research. The list of experiments covers topics in chemistry, biology and materials science.

CHEM 690. Research Seminar in Chemistry. 1 Hour.
Semester course; 2 lecture hours. 1 credit. May be repeated for credit. In addition to reports presented by students, staff and visiting lecturers, current problems and developments in nanoscience and nanotechnology are discussed. Graded S/U/F.

CHEM 691. Topics in Chemistry. 1-6 Hours.
Semester course; variable hours. 1-6 credits per semester. Maximum total of 9 credits for all topics courses. An advanced study of selected topic(s) in chemistry. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

CHEM 692. Chemistry Seminar Presentation. 1 Hour.
Semester course; 2 lecture hours. 1 credit. May be repeated for credit. In addition to reports presented by students, staff and visiting lecturers, current problems and developments in chemistry are discussed.

CHEM 693. Chemistry Perspectives and Ethics. 1 Hour.
Semester course; 1 lecture hour. 1 credit. The objectives of this course are to prepare graduate students for a career in the physical sciences and develop graduate student competency in the responsible conduct of research from both ethical and safety standpoints. Graded as S/U/F.

CHEM 696. Professional Skill Development. 3 Hours.
Semester course; 1 lecture and 12 laboratory hours. 3 credits. May be repeated for a maximum of nine credits. Enrollment is restricted to students pursuing the M.S. in Chemistry. This course allows students to gain professional development skills through the process of identifying and securing an internship or an applied research program with a scientific professional in an industrial, government or academic laboratory. The research is completed under the guidance of a graduate faculty member in collaboration with another scientist in one of these settings. The course involves hands-on experience and skill development to enable students to connect with future employers and/or mentors in their chosen industry. A comprehensive written report and an oral presentation to the student’s advisory committee is required. Students taking the course for the first time are required to participate in instructional sessions to clarify expectations, review roles and responsibilities and participate in activities related to professional skills development. Graded as satisfactory/unsatisfactory.

CHEM 697. Directed Research. 1-15 Hours.
Semester course; 1-15 credits. May be repeated for credit. Research leading to the M.S. and Ph.D. degree.

CHEM 698. Investigations in Current Chemistry Literature. 1 Hour.
Semester course; 1 lecture hour. 1 credit. May be repeated for credit; a maximum of two credit hours may be presented toward the didactic course graduation requirements to count as one course. Interactive course designed to engage graduate students in current research topics of chemistry while developing skills for critical analysis of primary chemistry literature through oral presentations, group discussions or other formats. Students are expected to enroll in this course at least once before their literature seminar presentation (CHEM 692).

CHEM 699. Scientific Writing in Chemistry. 1.5 Hours.
Semester course; 3 lecture hours. 1.5 credits. This course focuses on building up competence to write research proposals commensurate to the oral candidacy exam requirement for the Ph.D., as well as writing research articles using standard templates of chemistry journals. Proposal topics and journal templates will be assigned by the instructor at the beginning of the course.

Chemical biology
CHEB 601. Chemical Biology I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Provides an overview of the structure and function of biological macromolecules from a chemical biology perspective. The course will be divided into three sections – nucleic acids, proteins and carbohydrates. Each section will initially focus on the thermodynamic properties of these macromolecules including the energetics of folding, thermodynamics of interactions and, for catalytic molecules, the kinetics of catalysis. Citing literature examples, the class will then focus on how small molecules have been used to uncover these properties.
NANO 570. Nanoscale Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. This course builds a fundamental understanding of the unique properties of materials with nanoscale dimensions and emphasizes the physics and thermodynamics underlying several phenomena encountered in nanotechnology. The course starts from a general description of size effects and then moves to describe the fundamental aspects of nanocluster physics such as magic numbers, and concludes with a description of the theory and fabrication of nanoscale devices. Suggested background: PHYS 380.

NANO 571. Nanoscale Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. This course builds a fundamental understanding of the unique chemical properties of materials with nanoscale dimensions and emphasizes the synthetic chemistry encountered in nanotechnology. The course starts from a description of crystallization and growth models and concludes with discussion of several different synthetic approaches of nanoscale systems. Suggested background: PHYS 380.

NANO 630. Experimental Techniques in Nanoscience. 3 Hours.
Semester course; 3 lecture hours. 3 credits. This course will explore a select number of fundamental topics that are essential to nanoscience and nanotechnology. Topics will be developed to a basic understanding of the scientific principles and technological methods that are employed in research in experimental nanoscience. Theoretical concepts are only briefly introduced when they are needed. The following topics will be examined: ultra-high vacuum system and techniques, surface structure and characterization techniques, surface electronic properties, atomic motion and vibration on solid surface, semiconductor surfaces and interfaces, nanofabrication techniques.

NANO 650. Experimental Techniques in Nanoscience I. 1.5 Hour.
Semester course; 1.5 lecture hours. 1.5 credits. The course will focus on a variety of instrumental methods and techniques commonly applied to the characterization of nanomaterials. Particular attention will be placed on the theory behind the measurements, instrument safety, sample preparation and data analysis/interpretation. Topics will focus on X-ray, optical and electron characterization techniques. Suggested background: CHEM 409 or PHYS 450.

NANO 651. Experimental Techniques in Nanoscience II. 1.5 Hour.
Semester course; 1.5 lecture hours. 1.5 credits. The course will focus on a variety of instrumental methods and techniques commonly applied to the characterization of nanomaterials. Particular attention will be placed on the theory behind the measurements, instrument safety, sample preparation and data analysis/interpretation. Topics will cover morphological and physical properties characterization tools. Suggested background: CHEM 409 or PHYS 450.

NANO 660. Theoretical Studies of Nanostructures. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM 660 or PHYS 580. Introduction to theoretical techniques needed to study electronic and magnetic properties of nanostructures. Covers theoretical first-principles approaches to study electronic structure of molecules, clusters, nanostructure materials and condensed matter, including determination of geometry and electronic states. Will also cover magnetic properties in reduced sizes, including quantum effects and the model Hamiltonians. A brief discussion of effective interatomic molecular potentials and their application in Monte-Carlo and molecular dynamics methods will be included, as well as a discussion of application of nanomaterials to medical areas. Suggested background: CHEM 660 or PHYS 580.

NANO 661. Computational Nanoscience. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM 511, CHEM 512 or CHEM 612. Open only to students admitted to the Nanoscience and Nanotechnology Ph.D. program. Introduction to computational methods used to model true nanostructures containing more than \(10^5\) atoms and whose assembly, morphology and properties are governed by noncovalent interactions. Structural and dynamic aspects of the computational methods will be covered throughout the course. Applications to nanotechnology and environmental cleanup will be covered through special topics assignments during the semester and discussed by the end of the course.

NANO 690. Research Seminar in Nanoscience and Nanotechnology. 1 Hour.
Semester course; 2 lecture hours. 1 credit. May be repeated for credit. In addition to reports presented by staff and visiting lecturers, current problems and developments in nanoscience and nanotechnology are discussed. Graded S/U/F.

NANO 692. Nanoscience Seminar Presentation. 1 Hour.
Semester course; 2 lecture hours. 1 credit. May be repeated for credit. In addition to reports presented by students, staff and visiting lecturers, current problems and developments in chemistry are discussed.