BIOSTATISTICS, DOCTOR OF PHILOSOPHY (PH.D.) WITH A CONCENTRATION IN GENOMIC BIOSTATISTICS

Program goal
The mission of the VCU Department of Biostatistics is to improve human health through methodological research, the education of graduate students and health science researchers in biostatistical methods and applications, and collaborative health sciences research. Faculty members conduct methodological research motivated by collaborative alliances, which in turn contributes to and enhances the department’s educational mission. By focusing on the integration of methodological and collaborative research, students develop strong biostatistical and communication skills, enabling them to assume leadership positions in academia, government and industry.

Student learning outcomes
This training program is designed to help students achieve the following learning outcomes:

1. The successful candidate will understand the modern and advanced literature of biostatistical and genomics concepts, ideas and methods, to which the candidate will contribute by developing new (or extending existing) biostatistical and genomics methods through scholarly peer-reviewed publications.
2. The successful candidate will demonstrate the ability to effectively collaborate with biostatistical, genomics and health science researchers, specifically with respect to planning and designing research studies, and also in analyzing data from a broad spectrum of research questions.
3. The successful candidate will develop fluency in several computational languages, will exhibit proficiency in standard computational and analytic procedures and will demonstrate the ability to computationally solve new and complex problems.
4. The successful candidate will display exceptional written and oral communication skills in terms of explaining biostatistical and genomics concepts, methods and results to both biostatistical and non-biostatistical health sciences researchers.

VCU Graduate Bulletin, VCU Graduate School and general academic policies and regulations for all graduate students in all graduate programs
The VCU Graduate Bulletin website documents the official admission and academic rules and regulations that govern graduate education for all graduate programs at the university. These policies are established by the graduate faculty of the university through their elected representatives to the University Graduate Council.

It is the responsibility of all graduate students, both on- and off-campus, to be familiar with the VCU Graduate Bulletin as well as the Graduate School website and academic regulations in individual school and department publications and on program websites. However, in all cases, the official policies and procedures of the University Graduate Council, as published on the VCU Graduate Bulletin and Graduate School websites, take precedence over individual program policies and guidelines.

Visit the academic regulations section for additional information on academic regulations for graduate students.

Degree candidacy requirements
A graduate student admitted to a program or concentration requiring a final research project, work of art, thesis or dissertation, must qualify for continuing master’s or doctoral status according to the degree candidacy requirements of the student’s graduate program. Admission to degree candidacy, if applicable, is a formal statement by the graduate student’s faculty regarding the student’s academic achievements and the student’s readiness to proceed to the final research phase of the degree program.

Graduate students and program directors should refer to the following degree candidacy policy as published in the VCU Graduate Bulletin for complete information and instructions.

Visit the academic regulations section for additional information on degree candidacy requirements.

Graduation requirements
As graduate students approach the end of their academic programs and the final semester of matriculation, they must make formal application to graduate. No degrees will be conferred until the application to graduate has been finalized.

Graduate students and program directors should refer to the following graduation requirements as published in the Graduate Bulletin for a complete list of instructions and a graduation checklist.

Visit the academic regulations section for additional information on graduation requirements.

Other information
School of Medicine graduate program policies
The School of Medicine provides policies applicable to all programs administratively housed in the school. Information on doctoral programs is available elsewhere in this chapter of the Graduate Bulletin.

Apply online at graduate.admissions.vcu.edu (http://www.graduate.admissions.vcu.edu).

Admission requirements

<table>
<thead>
<tr>
<th>Degree:</th>
<th>Semester(s) of entry:</th>
<th>Deadline dates:</th>
<th>Test requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D.</td>
<td>Fall preferred</td>
<td>Applications received prior to Jan 15 given priority consideration</td>
<td>GRE</td>
</tr>
</tbody>
</table>

In addition to the general admission requirements of the VCU Graduate School (http://bulletin.vcu.edu/graduate/study/admission-graduate-study/admission-requirements), applicants must complete the verbal, quantitative and analytical writing sections of the Graduate Record Exam. The following mathematics courses or their equivalents are required for admission: MATH 307, MATH 310, STAT 309 and STAT 212. MATH 507 and an
additional graduate-level math analysis course are recommended for students interested in completing the Ph.D. program.

Degree requirements

In addition to the general VCU Graduate School graduation requirements (http://bulletin.vcu.edu/academic-regs/grad/graduation-info), Ph.D. students in the genomic biostatistics concentration will complete a minimum of 78 graduate credit hours (59 didactic credit hours plus eight hours each of consulting and seminar, and at least three credit hours of research). More specifically, required courses include: BIOS 513, BIOS 514, BIOS 524, BIOS 553, BIOS 554, BIOS 567, BIOS 571, BIOS 572, BIOS 573, BIOS 615, BIOS 632, BIOS 647, BIOS 668, BNFO 540 (or BIOL 540) and one of OVPR 601, OVPR 602 or OVPR 603. In addition, students will take one of BIOS 667 or BIOS 691, and at least nine credits of other graduate-level BIOS, STAT, MATH or BNFO courses. Ph.D. students must take eight semesters each of BIOS 516 and BIOS 690. Ph.D. students will also participate in the summer student research program at least twice and present at the Biostatistics Student Research Symposium each fall.

Qualifying exam

Students pursuing the Ph.D. degree must pass a two-part qualifying examination administered after completion of their first-year courses. Part A (the theoretical examination) covers material from the following first-year courses: BIOS 513, BIOS 514, BIOS 553 and BIOS 554. Part B (the applied examination) covers material from the following first-year courses: BIOS 524, BIOS 571, BIOS 572 and BIOS 573.

Each part of the exam is graded as pass or fail. A student must pass both Part A and Part B of the qualifying exam at the Ph.D. level to continue in the Ph.D. program. A student who does not pass either Part A or Part B of the qualifying examination at the Ph.D. level will have one opportunity to retake that part of the qualifying examination.

Dissertation proposal defense

Students pursuing the Ph.D. degree who have passed the qualifying exam must pass a defense of their dissertation proposal that will consist of both written and oral components. For the written component of the dissertation proposal defense the student will produce a detailed report and description of the proposed research plan. For the oral component of the dissertation proposal defense the student will present the dissertation proposal to their dissertation committee and respond to any feedback or questions.

The proposal defense will be scheduled as soon as the student is ready after passing both parts of the qualifying examination. This could be as early as Year 2, with students required to defend before December of their fourth year.

Each part of the exam is graded as pass or fail. A student must pass both Part A and Part B of the dissertation proposal defense to continue toward their final dissertation defense. A student who does not pass both Part A and Part B of the dissertation proposal defense may choose to complete the requirements for an M.S. degree.

Admission to candidacy

A student must pass both parts A and B of their qualifying examination, must identify a dissertation adviser and committee and must pass both the written and oral components of the dissertation proposal defense before they can be admitted to candidacy.

Dissertation

A comprehensive dissertation reporting the results of original research related to genomics topics is required for the Ph.D. with a concentration in genomic biostatistics. It is expected that the dissertation will make use of some high-throughput genomic technology as an application for the methodological development.

Final examination

All Ph.D. candidates must defend their dissertations at a final oral examination. A public presentation will precede a Ph.D. defense closed to all but the student’s committee. Questions are restricted to the topic of the dissertation for the Ph.D. candidate.

Curriculum requirements

Required core courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 540</td>
<td>Fundamentals of Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOS/STAT 513</td>
<td>Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOS/STAT 514</td>
<td>Mathematical Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 524</td>
<td>Biostatistical Computing</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 553</td>
<td>Biostatistical Methods I</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 554</td>
<td>Biostatistical Methods II</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 567</td>
<td>Statistical Methods for High-throughput Genomics Data</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 571</td>
<td>Clinical Trials</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 572</td>
<td>Analysis of Biomedical Data I</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 573</td>
<td>Analysis of Biomedical Data II</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 615</td>
<td>Advanced Inference</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 632</td>
<td>Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 647</td>
<td>Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 668</td>
<td>Statistical Methods for High-throughput Genomic Data II</td>
<td>3</td>
</tr>
<tr>
<td>OVPR 601</td>
<td>Scientific Integrity</td>
<td>1</td>
</tr>
<tr>
<td>or OVPR 602</td>
<td>Responsible Scientific Conduct</td>
<td>3</td>
</tr>
<tr>
<td>or OVPR 603</td>
<td>Responsible Conduct of Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours

46

BIOS/STAT courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 667</td>
<td>Statistical Learning and Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>or BIOS 691</td>
<td>Special Topics in Biostatistics</td>
<td>3</td>
</tr>
</tbody>
</table>

(Note: Another course may be chosen with approval of program director.)

Total Hours

3

Additional course

At least nine credits must come from the BIOS, STAT, MATH or BNFO courses listed below (or another with approval of program director):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 549</td>
<td>Spatial Data Analysis</td>
</tr>
<tr>
<td>BIOS 631</td>
<td>Mixed Models and Longitudinal Data Analysis</td>
</tr>
<tr>
<td>BIOS 635</td>
<td>Structural Equation Modeling</td>
</tr>
<tr>
<td>BIOS 638</td>
<td>Statistical Design and Analysis in Toxicology</td>
</tr>
<tr>
<td>BIOS 639</td>
<td>Statistical Design and Analysis in Toxicology</td>
</tr>
</tbody>
</table>
BIOS 649 Advanced Spatial Data Analysis
BIOS 688 Applied Bayesian Biostatistics
BIOS 691 Special Topics in Biostatistics
BNFO/BIOL 601 Integrated Bioinformatics
BNFO 691 Special Topics in Bioinformatics
MATH 640 Mathematical Biology I
STAT 613 Stochastic Processes
STAT 614 Stochastic Processes
STAT/OPER 636 Machine Learning Algorithms
STAT 642 Design and Analysis of Experiments I
STAT 645 Bayesian Decision Theory
STAT 675 Time Series Analysis I

Total Hours 9

Consulting and seminar courses
BIOS 516 Biostatistical Consulting (one-credit course taken for eight semesters) 8
BIOS 690 Biostatistical Research Seminar (one-credit course taken for eight semesters) 8

Total Hours 16

Dissertation research
BIOS 697 Directed Research in Biostatistics (variable credit; taken for a minimum of four credits) 4

Total Hours 4

Total graduate credit hours required (minimum) 78

Typical plan of study

Many students often end up taking more than the minimum number of hours required for a degree program. The total number of hours may vary depending upon the program, nature of research being conducted by a study or in the enrollment or funding status of the student. Students should refer to their program websites and talk with their graduate program directors or advisers for information about typical plans of study and registration requirements.

Graduate program director
Roy T. Sabo, Ph.D.
Associate professor, Department of Biostatistics
roy.sabo@vcuhealth.org
(804) 828-3047

Additional contact (admissions and prospective students)
Russell M. Boyle
Assistant professor, Department of Biostatistics, and associate program director
russell.boyle@vcuhealth.org
(804) 827-2049

Program website: biostatistics.vcu.edu (http://www.biostatistics.vcu.edu)