INTERDISCIPLINARY DEGREE PROGRAM IN SCIENCE

Charlene D. Crawley, Ph.D.
Coordinator

has.vcu.edu/science (http://www.has.vcu.edu/science/)

The interdisciplinary program in science provides students with a broad, yet fundamental, grounding in the sciences. In addition to the spectrum of required mathematics and science courses, students select a concentration from biology, chemistry, physics or professional science.

Students completing this curriculum earn a Bachelor of Science in Science.

For information concerning the program and advising, contact the program coordinator. Selected faculty in biology, chemistry, mathematical sciences and physics are the academic advisers for this program.

- Science, Bachelor of Science (B.S.) with a concentration in:
 - Biology (http://bulletin.vcu.edu/undergraduate/college-humanities-sciences/interdisciplinarydegreeprograminscience/science-bs-concentration-biology/)
 - Chemistry (http://bulletin.vcu.edu/undergraduate/college-humanities-sciences/interdisciplinarydegreeprograminscience/science-bs-concentration-chemistry/)
 - Physics (http://bulletin.vcu.edu/undergraduate/college-humanities-sciences/interdisciplinarydegreeprograminscience/science-bs-concentration-physics/)
 - Professional science (http://bulletin.vcu.edu/undergraduate/college-humanities-sciences/interdisciplinarydegreeprograminscience/science-bs-concentration-professional-science/)

- Biology (BIOL) (p. 1)
- Chemistry (CHEM) (p. 6)
- Physics (PHYS) (p. 8)

Biology

BIOL 101. Biological Concepts. 3 Hours.
Semester course; 3 lecture hours. 3 credits. A topical approach to basic biological principles. Topics include molecular aspects of cells, bioenergetics, photosynthesis, cellular respiration, cellular and organismal reproduction, genetics and evolution, and ecology. Not applicable for credit toward the major in biology.

BIOL 103. Environmental Science. 4 Hours.
Semester course; 3 lecture and 2 laboratory hours (delivered mostly online). 4 credits. Online presentations, assignments, debates and exams require students to understand situations and ideas that involve scientific, social and economic concepts associated with Earth's environment. Laboratory exercises reinforce major course concepts. Integrates aspects of biology, chemistry, geology, physics and sociology. Topics include ecology, evolution, natural resources, air and water resources, energy and recycling, population biology, and sustainable global societies. Not applicable as a prerequisite for any biology course at the 200 level or above, nor for credit toward the B.S. in Biology.

BIOL 151. Introduction to Biological Sciences I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 141, MATH 151, MATH 200, MATH 201 or a satisfactory score on the math placement exam; and CHEM 100 with a minimum grade of B, CHEM 101 with a minimum grade of C or a satisfactory score on the chemistry placement exam. Introduction to core biological concepts including cell structure, cellular metabolism, cell division, DNA replication, gene expression and genetics. Designed for biology majors.

BIOL 152. Introduction to Biological Sciences II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and CHEM 101, both with a minimum grade of C. Focuses on evolutionary principles, the role of natural selection in the evolution of life forms, taxonomy and phylogenies, biological diversity in the context of form and function of organisms, and and basic principles of ecology. Designed for biology majors.

BIOL 200. Quantitative Biology. 3 Hours.
Semester course; 3 lecture hours (delivered online or hybrid). 3 credits. Prerequisites: BIOL 151 and BIOL 152 with minimum grades of C; and MATH 151, MATH 200, MATH 201, STAT 210 or satisfactory score on the VCU Mathematics Placement Test within a one-year period immediately preceding the beginning of the course. Enrollment is restricted to biology majors and biology minors. An introduction to the application of the scientific method, experimental design and quantitative aspects of biology.

BIOL 201. Human Biology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 101, 151, or 152, or BIOL/ENV 103. Fundamentals of human biology, including the structure, function and disorders of human body systems, principles of human genetics and inheritance, human evolution, and the interaction of humans with the environment. Not applicable for credit toward the B.S. in Biology.

BIOL 205. Basic Human Anatomy. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours (plus online component). 4 credits. Prerequisites: BIOL 101 and BIOL 103, BIOL 151 and BIOL 153, or BIOL 152 and BIOL 154, each with a minimum grade of C. Enrollment is restricted to students majoring in communication arts, health and physical education, health, physical education and exercise science; pre-health majors in clinical laboratory sciences, clinical radiation sciences, dental hygiene and nursing; students enrolled in the health sciences certificate program; and students in the advising tracks for pre-occupational therapy, pre-physician assistant, pre-pharmacy and pre-physical therapy. Additionally, students in the pre-dentistry and pre-nursing accelerated advising tracks must speak with a pre-professional health adviser prior to enrolling in the class. Human specimens, models and interactive software are used to study human body structures; emphasis is on the skeleto-muscular aspects. Not applicable for credit toward the B.S. in Biology.

BIOL 209. Medical Microbiology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 101 and BIOL 103, BIOL 151 and BIOL 153, or BIOL 152 and BIOL 154, each with a minimum grade of C. General principles of microbiology and immunology to provide a thorough understanding of the host-microbe relationship in disease. Not applicable for credit toward the B.S. in Biology.

BIOL 217. Principles of Nutrition. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 101, 151 or 152 with a minimum grade of C, or BIOL/ENV 103 with a minimum grade of C. An introduction to basic principles of nutrition and their application in promoting growth and maintaining health throughout the life cycle. Not applicable for credit toward the B.S. in Biology.
BIOL 291. Topics in Biology. 1-4 Hours.
Semester course; variable hours. Variable credit. Prerequisites: BIOL 151, 152 and BIOZ 151, 152, with minimum grades of C. A study of a selected topic in biology. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

BIOL 300. Cellular and Molecular Biology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and 152; BIOZ 151 or LFSC/BNFO 251; BIOZ 152 or LFSC/BNFO 252; CHEM 101 and CHEZ 101, all with a minimum grade of C; BIOL 200, MATH 200, MATH 201, STAT 210, STAT 212 or STAT 314. Biology majors must have completed BIOL 200. Pre-or corequisites: CHEM 102 and CHEZ 102. A study of the molecular biology of the cell as it relates to gene expression, cell signaling, and cell growth and differentiation.

BIOL 303. Microbiology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 300 with a minimum grade of C. The morphological, biochemical, taxonomic, genetic and evolutionary characteristics of microorganisms with a primary focus on bacteria. Focuses on the structural, mechanical and biochemical adaptations employed by microorganisms in their interactions with host cells and substrates.

BIOL 304. Biology Skills. 2 Hours.
Semester course; 1 lecture hour (delivered online) and 3 laboratory hours. 2 credits. Prerequisites: BIOL 151 and BIOL 151 and permission of instructor. This course provides a hands-on experience in laboratory techniques, emphasizes the development of library and informational fluency skills, and uses current biological and/or biomedical research topics to aid in development of critical-thinking and problem-solving skills.

BIOL 307. Aquatic Ecology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 317, CHEM 102 and CHEZ 102, with minimum grades of C. The physical, chemical and especially the biological aspects of freshwater ecosystems.

BIOL 308. Vertebrate Histology. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: BIOL 300 with a minimum grade of C. Microanatomy of vertebrate cells, tissues and organs and the relationship of structure to function. Laboratory work involves an in-depth study of vertebrate microanatomy at the light microscope level as well as an introduction to techniques used for the preparation of materials for histological study.

BIOL 309. Entomology. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: BIOL 151, 152 and BIOZ 151, 152, with minimum grades of C. A field-based course that focuses on insect diversification, identification, natural history and basic biology.

BIOL 310. Genetics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and 152; BIOZ 151 or LFSC/BNFO 251; BIOZ 152 or LFSC/BNFO 252; CHEM 101; and CHEZ 101, all with a minimum grade of C; and BIOL 200, MATH 200, MATH 201, STAT 210, STAT 212 or STAT 314. Biology majors must have completed BIOL 200. Pre-or corequisites: CHEM 102 and CHEZ 102. The basic principles of molecular and applied genetics of plants, animals and microorganisms.

BIOL 312. Invertebrate Zoology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151, 152 and BIOZ 151, 152, with minimum grades of C. A survey of the invertebrate animals with emphasis on environmental interactions. A weekend trip to a marine environment is required.

BIOL 313. Vertebrate Natural History. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151, 152 and BIOZ 151, 152, with minimum grades of C. The natural history of vertebrates with emphasis on the species native to Virginia.

BIOL 314. Animal Reproduction. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL and BIOZ 151, BIOL and BIOZ 152, and BIOL 300, each with a minimum grade of C. Introduction to basic reproductive anatomy and physiology. Examination of the basic factors that affect reproductive performance and how these factors are used to regulate the reproductive processes of domestic animals and humans.

BIOL 317. Ecology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and 152; BIOZ 151 or LFSC/BNFO 251; BIOZ 152 or LFSC/BNFO 252; CHEM 101 and CHEZ 101, all with a minimum grade of C; BIOL 200, MATH 200, MATH 201, STAT 210, STAT 212 or STAT 314. Biology majors must have completed BIOL 200. An introduction to the basic principles of ecology, including interactions among organisms and influences of the physical environment.

BIOL 318. Evolution. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and 152; BIOZ 151 or LFSC/BNFO 251; BIOZ 152 or LFSC/BNFO 252; CHEM 101 and CHEZ 101, all with a minimum grade of C; BIOL 200, MATH 200, MATH 201, STAT 210, STAT 212 or STAT 314. Biology majors must have completed BIOL 200. An exploration of the theoretical and empirical foundations of evolutionary biology with a focus on the processes driving evolutionary change across all of life.

BIOL 320. Biology of the Seed Plant. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: BIOL and BIOZ 151 and BIOL and BIOZ 152, each with a minimum grade of C. The physiology, structure and adaptation of seed plants.

BIOL 321. Plant Development. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 300 and 310, each with a minimum grade of C. A survey of the developmental changes that take place during the life cycle of lower and higher plants. Emphasis is placed on the control factors that are involved in regulating the ordered changes which take place during development.

BIOL 322. Economic Botany. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and 152 and BIOZ 151 and 152, or equivalents, with minimum grades of C. This class focuses on plant morphology, anatomy, phytochemistry, growth and reproduction through an examination of the biology of economically and culturally important plants, including crops used for foods and beverages, medicines and drugs, fibers, and timber.

BIOL 324. Medicinal Botany. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and 152; BIOZ 151; BIOL 152 and BIOZ 152; and BIOL 300, all with a minimum grade of C. Topics include plant anatomy, morphology and reproduction; traditional plant medicine such as Ayurveda and traditional Chinese medicine; plant defense systems and secondary metabolites; and plant-derived drugs for various illnesses/ailments including cancer, arthritis, depression and diabetes.
BIOL 325. Fungal Biology. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: BIOL 300 with a minimum grade of C. The basic biology of fungi, including growth, structure, genetics, diversity, the commercial uses of fungi and their importance as model organisms. Also discusses the interactions between fungi and plants and fungi and humans.

BIOL 332. Environmental Pollution. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: eight credits in biology. The study of pollution in the environment with emphasis on the procedures for detection and abatement. Crosslisted as: ENV S 330.

BIOL 333. Evolution of the Angiosperms. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151, 152 and BIOZ 151, 152, all with minimum grade of C. Application of evolutionary concepts to flowering plants. Topics include speciation concepts, evolution of vegetative and sexual characteristics and an overview of angiosperm diversity to the level of family.

BIOL 335. Global Change Biology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151, BIOL 152, BIOZ 151 and BIOZ 152, all with minimum grade of C. Examines how humans influence biological systems and explores what can be done to adapt to or to mitigate future global change, emphasizing anthropogenic climate change.

BIOL 340. Development and Stem Cells. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 300 and CHEM 102, each with a minimum grade of C. Basic principles of developmental biology and stem cells of vertebrates, pinpointing the underlying cellular and molecular mechanisms that guide development and stem cell biology. Significant emphasis on medical aspects of development such as human birth defects, cloning, properties of stem cells and their medical uses, and careers in developmental and stem cell biology.

BIOL 341. Human Evolution. 4 Hours.
Semester course; 3 lecture and 2 laboratory hours. 4 credits. Prerequisite: UNIV 200 or HONR 200 with a minimum grade of C. Introduces the range of human diversity as well as a broad understanding of evolution and evolutionary biology, particularly as it applies to hominin evolution. Specific topics include basic genetics, primatology, paleontology and the hominin fossil record. Crosslisted as: ANTH 301.

BIOL 351. Introduction to Bioinformatics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BNFO 201 and BNFO 300 or permission of instructor. The course will present a practical and theoretical introduction to the tools and techniques needed to obtain and interpret a variety of genome-related data types. The course will include several bioinformatic methods underlying nucleotide and protein sequence alignment, statistical methods for data visualization in R, the types of experimental results commonly encountered in bioinformatics data analysis and the public databases where these data can be accessed. Crosslisted as: BNFO 301.

BIOL 391. Topics in Biology. 1-4 Hours.
Semester course; 1-4 lecture hours. 1-4 credits. Prerequisites: BIOL 152 and BIOZ 152; and BIOL 300, BIOL 310, BIOL 317 or BIOL 318, each with a minimum grade of C. A study of a selected topic in biology. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

BIOL 392. Introduction to Research. 2 Hours.
Semester course; 1 lecture and 1 demonstration hour. 2 credits. Prerequisite: BIOL 300, BIOL 310, BIOL 317 or BIOL 318 with a minimum grade of C. An introduction to the scientific process, including the mechanics of problem definition, information gathering and experimental design. Experimentation is discussed in context with methods of data collection and analysis. Aims are to prepare the student for future research experiences and to have the student write detailed research proposals.

BIOL 395. Directed Study. 1-2 Hours.
Semester course; variable hours. 1-2 credits. Maximum of 2 credits per semester; maximum total of 6 credits for all independent study courses (BIOL 395, BIOL 492, BIOL 495 and/or BIOZ 395). Prerequisites: BIOZ 151 and BIOZ 152 with minimum grades of C, permission of the Department of Biology and research mentor. Mentors are not limited to faculty members within the Department of Biology, but the context of the research study must be applicable to the biological sciences as determined by the department. Studies should include directed readings, directed experimentation or advanced guided inquiry — all under the direct supervision of a faculty member. A minimum of three hours of supervised activity per week per credit hour is required. Graded as pass/fail.

BIOL 401. Applied and Environmental Microbiology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: 300 and 317, each with a minimum grade of C. The biology and chemical activities of microorganisms (bacteria, algae, virus and fungi) of industrial, pharmaceutical and agricultural importance.

BIOL 402. Comparative Vertebrate Anatomy. 5 Hours.
Semester course; 3 lecture and 4 laboratory hours. 5 credits. Prerequisites: BIOL 300 and BIOL 318, each with a minimum grade of C. The evolution of vertebrate forms as demonstrated by anatomical studies of selected vertebrate types.

BIOL 403. Primatology. 4 Hours.
Semester course; 3 lecture and 2 laboratory hours. 4 credits. Prerequisite: ANTH 210 or ANTH 301/BIOL 341. Primatology investigates the taxonomic relationships among primates through comparative anatomy, comparative behavior and comparative biochemistry. Study of primate evolution, demography, subsistence, reproduction, social organization, communication systems and ecology. Crosslisted as: ANTH 403.

BIOL 411. Physiology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 300 and CHEM 301, each with a minimum grade of C. Focuses on the characterization and understanding of the function and mechanisms of major physiological systems, primarily using human physiology as a model. Emphasis is placed on understanding how different physiological systems work together to maintain homeostasis and predicting the consequences of damaging or deleting system components that can occur in diseases and injuries.

BIOL 413. Parasitology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 300 with a minimum grade of C. The epidemiology and pathological effects of eukaryotic parasites, including parasite life cycles and host-parasite relationships.
BIOL 415. Mangrove Avian Field Ecology. 4 Hours.
Semester course; two weeks abroad in Panama (or other tropical location with mangrove forests) followed by class meetings two days per week throughout most of spring semester. 4 credits. Prerequisite: BIOL 317. An immersive study of tropical ecology with a focus on bird ecology and conservation of mangrove ecosystems through a unique blend of rigorous science and community engagement. Two weeks of study abroad, including engagement with local conservation organizations and participation in education outreach with local schools, followed by discussion, data analysis and presentation of progress and research in a public symposium on campus.

BIOL 416. Ornithology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 317 with a minimum grade of C. Provides an integrative study of birds, including avian evolution and diversity, general anatomy and physiology, behavior, and ecology.

BIOL 417. Mammalogy. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: BIOL 218 and 317 with minimum grades of C. Study of the characteristics, adaptive radiation and distribution of mammals, with emphasis on North American forms.

BIOL 420. Yeast and Fermentation. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: BIOL 300 with a minimum grade of C. Corequisites: BIOL 303 and BIOL 310. Addresses the basic biology of yeast used in brewing beer and briefly in wine production. Topics will include yeast properties such as growth, structure, genetics, biodiversity and natural habitats. The process of wine and beer production will be discussed. Laboratory sessions include basic microbiology techniques, yeast isolation and characterization using DNA and biochemical methods, as well as the study of factors that affect fermentation. At the end of the course the students will give a presentation on other fermentation products of their interest such as vinegar, bread, etc., providing an expanded version of this important process.

BIOL 422. Forest Ecology. 4 Hours.
Semester course; 3 lecture hours and 3 laboratory hours. 4 credits. Prerequisite: BIOL 317 with a minimum grade of C. Covers the fundamentals of forest ecology, with a particular emphasis on Virginia’s diverse forest ecosystems. Students gain an understanding of the principal controls on forest structure, growth and distribution and relate these principles to sustainable forest management.

BIOL 423. Plant Physiology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151 and BIOZ 151; BIOL 152 and BIOZ 152; and BIOL 300 or equivalents, all with minimum grades of C. Physiology of higher plants at molecular, cellular and organism level. Topics include transport processes, metabolism, growth, stress responses and plant-soil interactions.

BIOL 425. Field Botany. 3 Hours.
Semester course; 2 lecture hours and 3 laboratory hours. (60 percent online, 40 percent field/laboratory) 3 credits. Prerequisites: BIOL 310 and BIOL 317, both with minimum grades of C. Online lectures, discussions, reflections and assessments in conjunction with field experience. Explores the effects of environmental conditions on plant morphology and adaptations, with emphasis on plant anatomy, plant physiology and ecology.

BIOL 430. Invasion Biology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151, BIOL 152, BIOZ 151, BIOZ 152 and BIOL 317, all with minimum grade of C. A comprehensive view of the ecology and impacts of invasive species. Integrates the effects of historical human demography, ecological disturbance, natural history, species interactions, barriers to invasion, invasive species management and impacts on natural communities and ecosystems.

BIOL 431. Introduction to Marine Biology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 317, CHEM 102 and CHEZ 102, with minimum grades of C. An introduction to physical, chemical and geological oceanography and a more detailed treatment of the organisms and ecological processes involved in the pelagic and benthic environments of the world’s oceans and estuaries.

BIOL 435. Herpetology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 317 with a minimum grade of C. The evolution, ecology, structure, taxonomy and behavior of reptiles and amphibians.

BIOL 438. Forensic Molecular Biology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 310 with a minimum grade of C. Provides an understanding of molecular biology testing methodologies as applied to analysis of forensic samples. Current topics in forensic DNA analysis will include quality assurance, DNA databanking, contemporary research and population genetics. Crosslisted as: FRSC 438.

BIOL 440. Developmental Biology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 300 and 310, each with a minimum grade of C. Basic principles of developmental biology focused on vertebrate model organisms with an emphasis on the underlying cellular and molecular mechanisms that guide development.

BIOL 445. Neurobiology and Behavior. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: BIOL 317 with a minimum grade of C. The study of animal behavior stressing ecological, evolutionary and neurobiological approaches.

BIOL 448. Neuroscience. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 300 with a minimum grade of C. Pre- or corequisite: BIOL 310. An examination of the basic structure of the nervous system, nervous system operation on a cellular and molecular level and the formation of the nervous system during development.

BIOL 450. Biology of Cancer I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 300 with a minimum grade of C or PHIS 309. An examination of the cellular, molecular and clinical aspects of cancer development, progression and treatment.

BIOL 451. Biology of Cancer II. 4 Hours.
Semester course; 1 lecture and 12 laboratory hours. 4 credits. Prerequisites: BIOL 450 and instructor’s permission. An examination of the cellular, molecular and clinical aspects of cancer development, progression and treatment.

BIOL 452. Biology of Drugs. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 300 with a minimum grade of C. Explores how drugs modulate biological signaling pathways to study, cure, enhance and intoxicate organisms. An introduction to basic pharmacology that largely focuses on human pathways and diseases. Topics include major drug classes (cardiovascular, gastrointestinal, etc.) and drugs of abuse (alcohol, marijuana, etc.).
BIOL 453. Cancer Biology Thesis. 4 Hours.
Semester course; 1 recitation and 12 laboratory hours. 4 credits.
Prerequisite: BIOL 451. Enrollment is restricted to students with permission of the instructor and research mentor. Students will benefit from invaluable learning opportunities in cancer research including hands-on learning, direct mentorship from a VCU faculty member, scientific writing skills, time and research project management, and exposure to and training in various laboratory techniques. In addition, students will gain experience in preparation of a cancer research proposal and thesis.

BIOL 455. Immunology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 300 with a minimum grade of C or PHIS 309. A comprehensive introduction to the immune system of higher animals, emphasizing the molecular and cellular basis for antibody-mediated immunity.

BIOL 459. Infectious Disease Ecology. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 151, BIOL 152, BIOL 153, and BIOL 317, all with minimum grade of C. A comprehensive and up-to-date overview of the causes and consequences of infectious disease at levels from individual organisms to global scale. Examines the history of infectious disease ecology in human and nonhuman populations. Students learn about the roles of transmission and coevolution in infectious disease ecology and how population models are used to inform management of epidemics and emerging infectious diseases.

BIOL 460. Human Evolutionary Genetics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 318 or BIOL 341 with a minimum grade of C. The origin and genetic history of modern humans, our historic colonization and migration, the utility of the Human Genome Project, our differences from other primates, adaptation to our environment and disease, and the ethical implications of genetic research in our society.

BIOL 475. Biology Capstone Seminar: ____. 1-3 Hours.
Semester course; 1-3 seminar hours. 1-3 credits. Prerequisites: BIOL 300, BIOL 310, BIOL 317 and BIOL 318, each with a minimum grade of C. Enrollment is restricted to biology majors with senior standing. Students read assigned topical papers before class, prepare critical analyses, discuss and debate selected positions. See Schedule of Classes for specific topics.

BIOL 477. Biology Capstone Experience. 0 Hours.
Semester course; variable hours. 0 credits. Prerequisites: BIOL 300, BIOL 310, BIOL 317 and BIOL 318, each with a minimum grade of C; and 90 hours of undergraduate course work. The following courses qualify as a capstone experience if taken concurrently with this course: BIOL 492, BIOL 493, BIOL 495, BIOL 497 or other courses, including topics courses, which include the core competencies required for a capstone experience and are approved by the chair of the Department of Biology. Graded as pass/fail.

BIOL 480. Animal-Plant Interactions. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: BIOL 317 or BIOL 318 with a minimum grade of C, or permission of the instructor. Ecological and evolutionary consequences of interactions among animals and plants.

BIOL 489. Communicating Research. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisite: Completion of the Biocore with minimum grades of C. Corequisite: BIOL 495, senior standing. Opportunity for students to develop skills necessary for effective oral presentation of their research work. Includes a variety of seminar discussions and activities such as preparation of figures for publication and the crafting of a research paper with correct usage of the primary literature. Students will use this as an opportunity to aid the writing of their thesis for BIOL 495.

BIOL 490. Presenting Research. 1 Hour.
Semester course; 1 credit. Prerequisite: Completion of the Biocore with minimum grades of C. Pre- or corequisites: BIOL 492 or 495, and senior standing. Opportunity for students to develop skills necessary for effective oral presentation of their research work. Includes a variety of seminar discussions and activities such as preparation of visual materials and statistical analysis of data. Students will make several oral presentations directly related to their specific BIOL 492 or 495 projects.

BIOL 491. Topics in Biology. 1-4 Hours.
Semester course; variable hours. Variable credit. Prerequisite: BIOL 300. A study of a selected topic in biology. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

BIOL 492. Independent Study. 1-4 Hours.
Semester course; 1-4 variable hours. 1-4 credits. Maximum of 4 credits per semester; maximum total of 6 credits for all independent study courses (BIOL 395, BIOL 492, BIOL 495 and/or BIOZ 395). A minimum of 2 credits is required for the course to count as a laboratory experience. Prerequisites: BIOZ 151 and BIOZ 152, each with a minimum grade of C; and permission of the chair of the Department of Biology. Projects should include data collection and analysis, learning field and/or laboratory techniques, and/or mastering experimental procedures, all under the direct supervision of a faculty member. A minimum of three hours of supervised activity per week per credit hour is required. A final report must be submitted at the completion of the project.

BIOL 493. Biology Internship. 1-3 Hours.
Semester course; variable hours. Variable credit. Maximum of 3 credits per semester; maximum total of 6 credits for all independent study and internship courses. 1 credit awarded for each 100 hours of work experience in professional biology setting. Prerequisites: BIOL 310 or 317 with minimum grades of C; and permission of the chair of the Department of Biology and of the agency, company or organization in which internship will be held. Internship designed to provide laboratory or field experience in an off-campus professional biology setting. A final report must be submitted upon completion of the internship. Graded as pass/fail.

BIOL 495. Research and Thesis. 1-4 Hours.
Semester course; 1-4 variable hours. 1-4 credits. Maximum of 4 credits per semester; maximum total of 6 credits for all undergraduate research in biology (BIOL 395, BIOL 492, BIOL 495 and/or BIOZ 395). A minimum of 2 credits is required for the course to count as a laboratory experience. A minimum of 4 credits is required for honors in biology. Prerequisites: BIOL 392, permission of the supervising faculty member and a research proposal acceptable to the departmental chair. Corequisite: BIOL 489 or BIOL 490, depending on term offering. Activities include field and/or laboratory research under the direct supervision of a faculty mentor. A minimum of three hours of supervised activity per week per credit hour is required. Research projects must include experimental design and analysis of data. This course must be taken for two consecutive semesters starting in the fall. A written thesis of substantial quality is required upon completion of the research.
BIOL 496. Biology Preceptorship: ____. 2 Hours.
Semester course; 2 practicum hours. 2 credits. May be repeated with a
different course for credit. Enrollment restricted to students who have
completed the relevant course with a minimum grade of B and who have
a minimum cumulative GPA of 3.0. Permission of instructor is required
prior to registration. Preceptors assist instructors in lecture (BIOL) or
laboratory (BIOZ) courses. Responsibilities vary and may include, but are
not limited to, attending class, conducting review sessions and preparing
course study review materials. Graded as pass/fail. A maximum of four
combined credits from BIOL 496 and BIOL 499 may be applied to degree
requirements.

BIOL 497. Ecological Service Learning. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisite: BIOL 317 with a
minimum grade of C. A service-learning course coupled to course content
and material taught in BIOL 317. Students will seek out ecologically
relevant opportunities with local, state and federal community partners
who will provide experiences to enhance academic enrichment and
personal growth and will help foster a sense of civic responsibility.
Students must complete a minimum of 20 service-learning hours with
community partner(s).

BIOL 498. Insects and Plants Service-learning. 2 Hours.
Semester course; 2 field experience hours. 2 credits. Prerequisites:
BIOL 317 or BIOL 318 with a minimum grade of C, and permission of
the instructor. A service-learning course related to insect-plant interactions.
Field experience with community partners, including public parks,
botanical gardens and organic farms. Designed to expand academic
instruction, enhance personal growth and foster a sense of civic
responsibility. Students must complete a minimum of 40 service-learning
hours with a community partner.

BIOL 499. Biology Lead Preceptorship. 2 Hours.
Semester course; 2 practicum hours. 2 credits. Prerequisite: BIOL 496
in the same course with a grade of Pass. Enrollment is restricted to
students who have completed the relevant course with a minimum
grade of B and who have a minimum cumulative GPA of 3.0. Permission
of the instructor is required prior to registration. Lead preceptors
assist instructors in lecture (BIOL) or laboratory (BIOZ) courses.
Responsibilities cumulate beyond those required in the prerequisite
course. Responsibilities vary and may include, but are not limited to,
organizing preceptor teams for large enrollment courses, preceptor
mentorship, data entry of course materials, execution of group work, etc.
Graded as pass/fail. A maximum of four combined credits from BIOL 496
and BIOL 499 may be applied to degree requirements.

Chemistry

CHEM 100. Introductory Chemistry. 3 Hours.
Semester course; 3 lecture and 1 problem session hour. 3 credits.
Prerequisite: students must be eligible to take MATH 131 or higher. A
course in the elementary principles of chemistry for individuals who
do not meet the criteria for enrollment in CHEM 101; required for all
students without a high school chemistry background who need to take
CHEM 101-102. These credits may not be used to satisfy any chemistry
course requirements in the College of Humanities and Sciences.

CHEM 101. General Chemistry I. 3 Hours.
Semester course; 3 lecture and 1 recitation hour. 3 credits.
Prerequisites: MATH 141, MATH 151, MATH 200, MATH 201 or
satisfactory score on the VCU mathematics placement test within the
one-year period immediately preceding the beginning of the course;
and CHEM 100 with a minimum grade of B or satisfactory score on the
chemistry placement exam/assessment within the one-year period
immediately preceding the beginning of the course. Fundamental
principles and theories of chemistry.

CHEM 102. General Chemistry II. 3 Hours.
Semester course; 3 lecture and 1 recitation hours. 3 credits.
Prerequisites: MATH 151, MATH 200, MATH 201 or satisfactory score
on the VCU Mathematics Placement Test within the one-year period
immediately preceding the beginning of the course; and CHEM 101 with
a minimum grade of C. Fundamental principles and theories of chemistry,
including qualitative analysis.

CHEM 110. Chemistry and Society. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The basic principles of
chemistry are presented through the use of decision-making activities
related to real-world societal issues. Not applicable for credit toward the
B.S. in Chemistry.

CHEM 112. Chemistry in the News. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The basic principles of
chemistry are used to interpret newspaper and magazine articles of
current interest relating to chemistry in manufacturing, the global
environment and medicine. Not applicable for credit toward the B.S. in
Chemistry.

CHEM 301. Organic Chemistry. 3 Hours.
Continuous courses; 3 lecture hours. 3-3 credits. Prerequisite: CHEM 102
with a minimum grade of C. Prerequisite for CHEM 302: CHEM 301 with a
minimum grade of C. A comprehensive survey of aliphatic and aromatic
compounds with emphasis on their structure, properties, reactions,
reaction mechanisms and stereochemistry.

CHEM 302. Organic Chemistry. 3 Hours.
Continuous courses; 3 lecture hours. 3-3 credits. Prerequisite: CHEM 102
with a minimum grade of C. Prerequisite for CHEM 302: CHEM 301 with a
minimum grade of C. A comprehensive survey of aliphatic and aromatic
compounds with emphasis on their structure, properties, reactions,
reaction mechanisms and stereochemistry.

CHEM 303. Physical Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 309
or CLSE 201 with minimum grades of C, and PHYS 202 or PHYS 208,
and MATH 201 or MATH 301 or MATH 307. Ideal and nonideal gases,
thermodynamics, free energy and chemical equilibrium.

CHEM 304. Physical Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 303
with a minimum grade of C. Kinetics, solution thermodynamics,
thermodynamic equilibria, electrochemistry and introductory biophysical
chemistry.

CHEM 305. Physical Chemistry for the Life Sciences. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 301-302
and CHEM 309 with minimum grades of C, and MATH 200. Concepts
and principles of physical chemistry as related to the life sciences,
forensic science and the B.S. in science programs. Major topics include
thermodynamics of proteins and nucleic acids, enzyme kinetics and
spectroscopic techniques useful in biophysical research such as circular
dichroism, nuclear magnetic resonance and magnetic resonance
imaging.
CHEM 306. Industrial Applications of Inorganic Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 302 and CHEZ 302. Chemical engineering students: EGRC 201 and EGRC 205. A study and analysis of the most important industrial applications of inorganic chemistry, with emphasis on structure/properties correlation, materials and energy balance, availability and logistics of starting materials, economic impact and environmental effects. Crosslisted as: CLSE 306.

CHEM 309. Quantitative Analysis. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 102 with a minimum grade of C, and MATH 151. Theory and practice of gravimetric, volumetric and instrumental analysis techniques and treatment of multiple equilibria in aqueous solutions.

CHEM 310. Medicinal Chemistry and Drug Design. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM 302. This course is designed to expose undergraduate chemistry, biology and pre-medicine majors to the history, theory and practice of medicinal chemistry. The course will emphasize a combination of fundamentals and applications of drug design. In particular, the molecular aspects of drug action will be discussed. Special emphasis will also be placed on the methods used by medicinal chemists to design new drugs. Crosslisted as: MEDC 310.

CHEM 313. Physical Chemistry I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 201; MATH 307; PHYS 202 or PHYS 208; CHEM 302; and CHEM 309, all with a minimum grade of C. Quantum chemistry, atomic and molecular structure, spectroscopy. Students may receive credit toward graduation for only one of CHEM 313 or CHEM 314.

CHEM 314. Physical Chemistry I with Math Modules. 4 Hours.
Semester course; 3 lecture and 1 recitation hours. 4 credits. Prerequisites: MATH 201; PHYS 202 or PHYS 208; CHEM 302; and CHEM 309, all with a minimum grade of C. Quantum chemistry, atomic and molecular structure, spectroscopy. Presents multivariate calculus concepts necessary for physical chemistry. Students may receive credit toward graduation for only one of CHEM 313 or CHEM 314.

CHEM 315. Physical Chemistry II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM 313 or CHEM 314 with a minimum grade of C. Kinetic theory of gases, statistical and classical thermodynamics, kinetics.

CHEM 320. Inorganic Chemistry I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 101-102 with minimum grades of C. A systematic, unified study of the structures, properties and reactions of applications of inorganic compounds.

CHEM 350. Guided Inquiry in Chemistry. 1.5 Hour.
Semester course; 1.5 lecture hours. 1.5 credits. Prerequisites: CHEM 101-102 with minimum grades of B. Student facilitators lead recitation sections using guided inquiry, group-based activities. Introduces students to the principles of guided inquiry, active learning and collaborative learning in chemistry through practical, hands-on class work, discussions, readings and a final project.

CHEM 351. Chemistry Preceptorship. 1.5 Hour.
Semester course; 1.5 lecture hours. 1.5 credits. Course may be repeated once for a total of 3 credits. Prerequisites: completion of relevant course with minimum grade of C, completion of CHEM 350 with a grade of B and permission of course instructor and departmental chair. Student facilitators lead recitation sections or laboratories in chemistry courses. Responsibilities vary and may include, but are not limited to, attending all classes, holding weekly review sessions or office hours and/or routine grading. A weekly reflection journal and final project are required.

CHEM 391. Topics in Chemistry. 1-4 Hours.
Semester course; variable hours. Variable credit. Maximum of 4 credits per semester; maximum total of 6 credits for all chemistry topics courses may be applied to the major. Prerequisites: CHEM 101-102 and CHEZ 101, 102. A study of a selected topic in chemistry. See the Schedule of Classes for specific topics to be offered each semester.

CHEM 392. Directed Study. 1-4 Hours.
Semester course; variable hours. 1-4 credits. May be repeated for a maximum total of 8 credits; only 3 credits are applicable to the chemistry major. Prerequisites: CHEM 102 and CHEZ 101 and 102. The independent investigation of chemical problems through readings and experimentation under the supervision of a research adviser. Written interim and final reports are required.

CHEM 398. Professional Practices and Perspectives Seminar. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisites: CHEM 102 and CHEZ 102, each with a minimum grade of C. Enrollment is restricted to chemistry majors with at least sophomore standing. Seminar course for students considering careers in chemistry-related fields, covering topics such as scientific professionalism and ethics and using chemical literature.

CHEM 401. Applications of Instrumental Techniques in Organic and Forensic Chemistry. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: CHEM 302 and CHEZ 302. Theory and laboratory practice of instrumental and chemical methods applied to the analysis of organic compounds with emphasis on applications in forensic chemistry.

CHEM 403. Biochemistry I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 302 with a minimum grade of C. A presentation of structural biochemistry, enzymology, biophysical techniques, bioenergetics and an introduction to intermediary metabolism.

CHEM 404. Biochemistry II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM 403 with a minimum grade of C. A presentation of metabolism and its regulation as integrated catabolism and anabolism of molecules that are essential to life.

CHEM 406. Inorganic Chemistry II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 313 or CHEM 314; and CHEM 320. An advanced study of inorganic chemistry, including inorganic spectroscopy, organometallic compounds and catalysis, and bioinorganic systems.

CHEM 409. Instrumental Analysis. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 313, CHEM 314 or CHEM 315; and CHEM 309 and CHEZ 309. Theory and practice of modern spectrophotometric, electroanalytical and chromatographic and nuclear magnetic resonance methods.
CHEM 491. Topics in Chemistry. 1-4 Hours.
Semester course; variable hours. Variable credit. Maximum of 4 credits per semester; maximum total of 6 credits for all chemistry topics courses may be applied to the major. Prerequisites: CHEM 102 and CHEZ 101 and 102. A study of a selected topic in chemistry. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

CHEM 492. Independent Study. 1-4 Hours.
Semester course; variable hours. 1-4 credits. May be repeated for a maximum total of 8 credits; only 3 credits are applicable to the chemistry major. Prerequisites: CHEM 102 and CHEZ 101 and 102. The independent investigation of chemical problems through readings and experimentation under the supervision of a research adviser. Written interim and final reports required.

CHEM 493. Chemistry Internship. 1-3 Hours.
Semester course; variable hours. Variable credit. Maximum of 3 credits; 1 credit will be given for each 150 hours (approximately one month) of part-time or full-time chemical work experience. Prerequisites: CHEM 102 and CHEZ 101 and 102. Acquisition of chemistry laboratory experience through involvement in a professional chemistry setting. Written progress and final reports will be required.

CHEM 498. Honors Thesis. 1 Hour.
Semester course; 1 credit. Prerequisites: completion of 29 credits in chemistry, including CHEM 398 and at least six credits of CHEM 492. Students submit to the Department of Chemistry a thesis based on their independent study research. Students also present their results to the department as a research seminar.

CHEM 499. Chemistry Capstone Experience. 0 Hours.
Semester course; 0 hours. 0 credits. Prerequisites: CHEZ 302, CHEZ 309, CHEM 320, CHEM 398, CHEM 313 or CHEM 314, and CHEZ 313 or CHEM 315, each with a minimum grade of C. Enrollement is restricted to chemistry majors with 90 credit hours of undergraduate course work. Culminating course that requires two credits of advanced laboratory and three credits of advanced lecture. The following courses qualify as a capstone experience if taken concurrently with CHEM 499: any two-credit 400-level laboratory course or two credits of either CHEM 392 or CHEM 492; and any three-credit 400-level or 500-level chemistry lecture course. Graded as pass/fail.

Physics

PHYS 101. Foundations of Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. For non-science majors. Introduction to the fundamental ideas of physics. The course covers selected topics in mechanics, heat, optics, electricity and magnetism and modern physics. Not applicable toward the physics major. An optional laboratory may be taken with this course. See PHYZ 101L.

PHYS 103. Elementary Astronomy. 3 Hours.
Semester course; 3 lecture hours. 3 credits. A descriptive approach to astronomy dealing with basic features of our solar system, our galaxy and the universe. Not applicable toward physics major. An optional laboratory may be taken with this course. See PHYZ 103L.

PHYS 107. Wonders of Technology. 4 Hours.
Semester course; 5 lecture/laboratory/recitation hours. 4 credits. Introduction to physics concepts involved in everyday technological applications. The course covers selected topics in mechanics, heat, optics, electricity and magnetism, and modern physics by depicting their role in common devices. The laboratory focuses on applications of physics principles to everyday real-life situations. Not applicable toward the physics major.

PHYS 201. General Physics I. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: MATH 151. Designed primarily for life-science majors. Basic concepts of motion, waves and heat. Not applicable toward the physics major.

PHYS 202. General Physics II. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: PHYS 201 or PHYS 207. Designed primarily for life-science majors. Basic concepts of electricity, magnetism, light and modern physics. Not applicable toward the physics major.

PHYS 207. University Physics I. 5 Hours.
Semester course; 3 lecture, 1 recitation and 3 laboratory hours. 5 credits. Prerequisite: PHYS 207. Corequisite: MATH 201. A vector- and calculus-based introduction to the fundamental concepts of mechanics, heat and wave motion.

PHYS 208. University Physics II. 5 Hours.
Semester course; 3 lecture, 1 recitation and 3 laboratory hours. 5 credits. Prerequisite: PHYS 207. Corequisite: MATH 201. A vector- and calculus-based introduction to the fundamentals of electricity, magnetism and optics.

PHYS 211. Physical Analysis. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 201 and PHYS 208. Corequisite: MATH 307. Extends the discussion of physical phenomena introduced in prerequisite courses to introduce topics and skills needed for more advanced physics courses. Topics include applying complex analysis to wave motion and oscillations, methods to solve problems in mechanics and an introduction to classical thermodynamics using multivariate analysis.

PHYS 215. Science, Technology and Society. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Examination of scientific breakthroughs that have led to transformational technologies that are continuing to impact society today. Topics include a historical perspective, an understanding of scientific principles and technologies and an examination of how such discoveries have changed society. Not applicable toward physics major.

PHYS 291. Topics in Physical Science. 1-3 Hours.
Semester course; 1-3 lecture or laboratory hours. 1-3 credits per semester. A study of a selected topic in physics, astronomy, geology, meteorology or oceanography. Not applicable toward physics major. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 301. Classical Mechanics I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: MATH 301. Review of vector calculus. Newtonian mechanics: single particle, oscillations, motion under central forces and dynamics of a systems of particles.

PHYS 302. Classical Mechanics II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Motion in noninertial frames, dynamics of rigid bodies, coupled oscillators, continuous systems and wave equations in one dimension.
PHYS 307. The Physics of Sound and Music. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: A 100- or 200-level physics course or equivalent and the ability to read music or sing or play a musical instrument, or permission of instructor. Basics of the physics of waves and sound. Fourier synthesis, tone quality, human ear and voice, musical temperament and pitch, physics of musical instruments, electronic synthesizers, sound recording and reproduction, room and auditorium acoustics. Not applicable toward the physics major. Crosslisted as: MHIS 307.

PHYS 315. Energy and the Environment. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to non-physics majors with junior or senior standing; not applicable to the physics major. A study of society's demands for energy, how it is currently being met, the environmental consequences thereof and some discussion of alternatives. Crosslisted as: ENVS 315.

PHYS 320. Modern Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: MATH 301. Foundations of modern physics including special relativity, thermal radiation and quantization, wave-particle duality of radiation and matter, Schrödinger equation, atomic, nuclear and particle physics, and molecular structure and spectra. A continuation of PHYS 208.

PHYS 325. Visualization of Physics Using Mathematica. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: PHYS 301 or PHYS 320. Visualization of various areas of physics using the Mathematica language for performing numerical calculations and producing graphics and animations. Examples will be taken from classical mechanics, classical electromagnetism, modern physics, statistical mechanics and condensed matter physics.

PHYS 335. Experimental Skills for Physicists. 3 Hours.
Semester course; 2 lecture and 2 laboratory hours. 3 credits. Prerequisites: PHYS 320 and PHYZ 320. Practical skills in experimental physics, including use of micro controllers, sensor modules, high-precision positions and opto-electronics. Skills will be used to address engaging and current real-world challenges.

PHYS 340. Statistical Mechanics and Thermodynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Microscopic theory of temperature, heat and entropy, kinetic theory, multicomponent systems, and quantum statistics. Mathematical relationships of thermodynamics.

PHYS 351. Guided Inquiry for University Physics I. 1.5 Hour.
Semester course; 1 lecture and 1 recitation hour. 1.5 credits. Prerequisites: PHYS 207 and permission of instructor. Student learning assistants aid in recitation sections of PHYS 207 University Physics I using guided inquiry and group-based activities. Further develops the core skills of PHYS 207. Introduces students to the principles of active and collaborative learning in physics through practical, hands-on problem-solving, class discussions and demonstrations.

PHYS 352. Guided Inquiry for University Physics II. 1.5 Hour.
Semester course; 1 lecture and 1 recitation hour. 1.5 credits. Prerequisites: PHYS 208 and permission of instructor. Student learning assistants aid in recitation sections of PHYS 208 University Physics II using guided inquiry and group-based activities. Further develops the core skills of PHYS 208. Introduces students to the principles of active and collaborative learning in physics through practical, hands-on problem-solving, class discussions and demonstrations.

PHYS 376. Electromagnetism. 3 Hours.
I Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Electrostatics, magnetism and electromagnetic properties of matter, Maxwell's equations, electromagnetic waves, boundary conditions, and polarization.

PHYS 377. Electromagnetism II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 376. Advanced topics in electromagnetism, such as the microscopic theory of magnetism, slowly varying currents, physics of plasmas, electromagnetic properties of superconductors, Maxwell's equations and propagation of electromagnetic waves in bounded media, dispersive media, electromagnetic radiation, electromodynamics of moving charges, and the relativistic formulation of electrodynamics.

PHYS 380. Quantum Physics I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301, PHYS 320 and MATH 301, or permission of instructor. Brief introduction to the correspondence between classical and quantum mechanics, Schrödinger wave equation, operator methods in quantum mechanics, angular momentum and conservation laws, solution to harmonic oscillator and the hydrogen atom, magnetic dipole momentum and spin.

PHYS 391. Topics in Physics. 1-3 Hours.
Semester course; 1-3 lecture hours. 1-3 credits per semester. Maximum total of 6 credits. In-depth study of a selected topic in physics or physics-related technology, usually at a level requiring only elementary algebra. Not applicable toward physics major. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 397. Directed Study. 1-3 Hours.
Semester course; variable hours. 1-3 credits per semester. Maximum of 3 credits applicable toward physics major requirement; maximum total of 4 credits. Open to nonmajors. Determination of amount of credit and permission of instructor must be obtained before registration of course. Intended to allow nonmajors and majors to examine in detail an area of physics or physics-related technology not otherwise available in upper-level courses. May involve either directed readings or directed laboratory work.

PHYS 420. Quantum Physics II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 380 or permission of instructor. Transition rates, addition of angular momentum, multi-electron atoms-ground state, X-ray and optical excitations, time independent perturbation theory, relativistic hydrogen atom and the structure of atoms, collision theory, nuclear structure, elementary particles and their symmetries.

PHYS 422. Optics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 376 or permission of instructor. Comprehensive study of propagation of light, including geometrical optics, polarization, interference, diffraction, Fourier optics and quantum optics.

PHYS 440. Introduction to Condensed Matter Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 340 and 380. Corequisite: PHYS 376. Structure and bonding in solids, phonons, free electron Fermi gas, energy bands, semiconductors, Fermi surface, optical properties and magnetism.

PHYS 450. Senior Physics Laboratory. 3 Hours.
Semester course; 1 lecture and 4 laboratory hours. 3 credits. Prerequisites: PHYS 301 and 320, and PHYZ 320. Experiments in condensed matter physics with an introduction to the instrumentation and data analysis used in the research laboratory.
PHYS 480. Particle Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 340, PHYS 376 and PHYS 420. Basic concepts of particle physics, including the Dirac equation, lowest-order quantum electrodynamics calculations, scattering amplitudes and cross sections, the weak interaction, processes involving quarks and their symmetries, and quantum chromodynamics.

PHYS 483. Introduction to Astrophysics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 320 and PHYS 340. Pre- or corequisites: PHYS 376 and PHYS 380. Basic concepts of star formation and evolution, galactic structures, and cosmology. Includes stellar atmospheres and interiors, the sun, the Milky Way and other galaxies, and black holes.

PHYS 490. Seminar in Conceptual Physics. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisites: PHYS 340, PHYS 376, PHYS 380 and PHYZ 320. Restricted to seniors in physics with at least 85 credit hours taken toward the degree. A senior capstone course in physics designed to help students formulate physics-related questions in such a way that they can obtain quantitative answers. Students will describe their results in a senior paper and in an oral presentation.

PHYS 491. Topics in Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Maximum of 3 credits applicable toward physics major requirement; maximum total of 6 credits. An in-depth study of a selected topic in physics. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 492. Independent Study. 1-3 Hours.
Semester course; variable hours. 1-3 credits per semester. Maximum of 3 credits applicable toward physics major requirement; maximum total of 8 credits. Open generally to students of only junior or senior standing who have acquired at least 12 credits in the departmental discipline. Determination of the amount of credit and permission of instructor and department chair must be procured prior to registration of the course. Independent projects in experimental or theoretical physics.