PHYSICS, BACHELOR OF SCIENCE (B.S.) WITH A CONCENTRATION IN NANOSCIENCE

The Bachelor of Science in Physics with a concentration in nanoscience requires a minimum of 120 credits. The curriculum prepares students for careers in industry, academia, applied health or nanoscience-related areas. The curriculum also prepares students for graduate studies in nanoscience and related areas.

Learning outcomes
Students will learn to perform scientific reasoning and complex problem-solving. Physics majors will receive a fundamental understanding of the main areas of physics so that they are prepared for jobs that use physics-based technologies. They are expected to have mastered the analytical approach to solving technical problems by identifying simple subsystems that obey known physical laws and using these laws to approximate the behavior of the whole system.

Students will demonstrate a fundamental understanding of the main areas of physics.

Students will demonstrate communication skills, both written and oral, needed to explain the analysis of technical problems.

Students will demonstrate scientific literacy skills including searching, reading and critically reviewing scientific publications.

Students will demonstrate proficiency in information processing by generating and interpreting data presented in tables, graphs, drawings and models.

Double major in engineering and physics
A detailed description of this program (http://bulletin.vcu.edu/undergraduate/engineering/double-major-physics) can be found in the “College of Engineering” section of this bulletin.

Students must complete 51-53 credits in physics and physics-related electives and 19 credits in collateral requirements.

Degree requirements for Physics, Bachelor of Science (B.S.) with a concentration in nanoscience

General education requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Education Curriculum (minimum 21 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIV 111 Play course video for Focused Inquiry I</td>
<td>Focused Inquiry I</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 112 Play course video for Focused Inquiry II</td>
<td>Focused Inquiry II</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 200</td>
<td>Inquiry and the Craft of Argument</td>
<td>3</td>
</tr>
<tr>
<td>Approved humanities/fine arts</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Approved natural/physical sciences</td>
<td></td>
<td>3-4</td>
</tr>
</tbody>
</table>

Approved quantitative literacy 3-4
Approved social/behavioral sciences 3-4
Total Hours 21-24

Course Title Hours
Additional College of Humanities and Sciences requirements (11-23 credits)
HUMS 202 Choices in a Consumer Society 1
Approved H&S diverse and global communities 3
Approved H&S human, social and political behavior (fulfills University Core social/behavioral sciences) 4
Approved H&S literature and civilization (fulfills University Core humanities/fine arts) 4
Approved H&S science and technology (fulfills University Core natural/physical sciences) 4
Approved H&S general education electives 6-8
Experiential fine arts 1 1-3
Foreign language through the 102 level (by course or placement) 0-8
Total Hours 11-23

Course offered by the School of the Arts

Collateral requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101 & CHEZ 101</td>
<td>General Chemistry I and General Chemistry Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus with Analytic Geometry I (fulfills University Core quantitative literacy)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus with Analytic Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 301</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 307</td>
<td>Multivariate Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Major requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required physics courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 207</td>
<td>University Physics I</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 208</td>
<td>University Physics II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 301</td>
<td>Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 320 & PHYZ 320</td>
<td>Modern Physics and Modern Physics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 335</td>
<td>Experimental Skills for Physicists</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 340</td>
<td>Statistical Mechanics and Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 376</td>
<td>Electromagnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 380</td>
<td>Quantum Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 397</td>
<td>Directed Study (with NANO faculty)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 440</td>
<td>Introduction to Condensed Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 450</td>
<td>Senior Physics Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>
PHYS 490 Seminar in Conceptual Physics (capstone) 1
PHYS 491 Topics in Physics (Nanoscience) 3
PHYS 492 Independent Study (with NANO faculty) 3

Physics and physics-related electives for the nanoscience concentration

Select two options from the following list: 6-8
CHEM 102 General Chemistry II
&m CHEZ 102 and General Chemistry Laboratory II (4 credits)
EGRE 334 Introduction to Microfabrication (4 credits)
PHYS 377 Electromagnetism II (3 credits)
PHYS 522 Optics and Laser Physics (3 credits)
PHYS 560 Fundamentals of Semiconductor Nanostructures (3 credits)
NANO 570 Nanoscale Physics (3 credits)

Total Hours 51-53

Open electives

Select five to 21 open elective credits 5-21

The minimum total of credit hours required for this degree is 120.

Physics and physics-related electives

Any of the following upper-level physics courses:
PHYS 302 Classical Mechanics II
PHYS 325 Visualization of Physics Using Mathematica
PHYS 335 Experimental Skills for Physicists
PHYS 351 Guided Inquiry for University Physics I
PHYS 352 Guided Inquiry for University Physics II
PHYS 377 Electromagnetism II
PHYS 397 Directed Study (maximum of 3 credits)
PHYS 420 Quantum Physics II
PHYS 422 Optics
PHYS 440 Introduction to Condensed Matter Physics
PHYS 480 Particle Physics
PHYS 483 Introduction to Astrophysics
PHYS 491 Topics in Physics (maximum of 3 credits)
PHYS 492 Independent Study (maximum of 3 credits)
PHYS 514 Modeling Biocomplexity
PHYS 522 Optics and Laser Physics
PHYS 571 Theoretical Mechanics
PHYS 573 Analytical Methods in Physics
PHYS 576 Electromagnetic Theory
PHYS 580 Quantum Mechanics
PHYS 583 Geometrical Methods of Physics and Gravitation

Any of the following math or statistics courses:
MATH 310 Linear Algebra
MATH 415 Numerical Methods
MATH 433 Partial Differential Equations
MATH 511 Applied Linear Algebra
STAT 441 Applied Statistics for Engineers and Scientists

Any of the following chemistry courses:
CHEM 409 Instrumental Analysis
CHEM 510 Atomic and Molecular Structure

Any of the following engineering courses:
CLSE 301 Transport Phenomena I
CLSE 302 Transport Phenomena II
EGMN 301 Fluid Mechanics
EGMN 309 Material Science for Engineers
EGMN 351 Nuclear Engineering Fundamentals
EGMN 352 Nuclear Reactor Theory
EGRE 427 Biomaterials
EGRE 303 Electronic Devices
EGRE 306 Introduction to Microelectronics
EGRE 307 Integrated Circuits
EGRE 310 Electromagnetic Fields and Waves
EGRE 334 Introduction to Microfabrication
EGRE 521 Advanced Semiconductor Devices

Those students intending to pursue graduate studies in physics should choose electives from the following:

Course Title Hours
PHYS 302 Classical Mechanics II
PHYS 325 Visualization of Physics Using Mathematica
PHYS 420 Quantum Physics II
PHYS 440 Introduction to Condensed Matter Physics
PHYS 480 Particle Physics
PHYS 483 Introduction to Astrophysics
PHYS 514 Modeling Biocomplexity
PHYS 522 Optics and Laser Physics
PHYS 571 Theoretical Mechanics
PHYS 573 Analytical Methods in Physics
PHYS 576 Electromagnetic Theory
PHYS 580 Quantum Mechanics
PHYS 583 Geometrical Methods of Physics and Gravitation

Those interested in experimental physics should also take one or more credits in PHYS 397 or PHYS 492.

Courses not applicable toward the major

Course Title Hours
PHYS 101 Foundations of Physics
PHYS 103 Elementary Astronomy
What follows is a sample plan that meets the prescribed requirements within a four-year course of study at VCU. Please contact your adviser before beginning course work toward a degree.

Freshman year

Fall semester
- CHEM 101: General Chemistry I and General Chemistry Laboratory I - 4 hours
- MATH 200: Calculus with Analytic Geometry I (satisfies quantitative literacy) - 4 hours
- UNIV 111: Focused Inquiry I - 3 hours
- Play course video for Focused Inquiry I
- Approved diverse and global communities - 3 hours
- Experiential fine arts - 1-3 hours

Total Term Hours: 15-17

Spring semester
- HUMS 202: Choices in a Consumer Society - 1 hour
- MATH 201: Calculus with Analytic Geometry II - 4 hours
- PHYS 207: University Physics I - 5 hours
- UNIV 112: Focused Inquiry II - 3 hours
- Play course video for Focused Inquiry II
- Approved science and technology - 3-4 hours

Total Term Hours: 15-16

Sophomore year

Fall semester
- MATH 307: Multivariate Calculus - 4 hours
- PHYS 208: University Physics II - 5 hours
- UNIV 200: Inquiry and the Craft of Argument - 3 hours
- Foreign language (101-level) - 4 hours

Total Term Hours: 16

Spring semester
- MATH 301: Differential Equations - 3 hours
- PHYS 301: Classical Mechanics I - 3 hours
- PHYS 320: Modern Physics and Modern Physics Laboratory - 4 hours
- Foreign language (102-level) - 4 hours

Total Term Hours: 14

Junior year

Fall semester
- PHYS 376: Electromagnetism I - 3 hours
- PHYS 380: Quantum Physics I - 3 hours
- Approved general education elective - 3-4 hours
- Approved human, social and political behavior - 3-4 hours
- Approved literature and civilization - 3-4 hours

Total Term Hours: 15-17

Spring semester
- PHYS 397: Directed Study - 3 hours
- PHYS 440: Introduction to Condensed Matter Physics - 3 hours
- PHYS 450: Senior Physics Laboratory - 3 hours
- PHYS 491: Topics in Physics (Nanoscience) - 3 hours
- Nanoscience concentration elective - 3-4 hours

Total Term Hours: 15-16

Senior year

Fall semester
- PHYS 390: Seminar in Conceptual Physics - 1 hour
- PHYS 492: Independent Study (with NANO advisor) - 3 hours
- Nanoscience concentration elective - 3-4 hours
- Open electives (upper-level if needed) - 3 hours
- Open electives - 4 hours

Total Term Hours: 14-15

Total Hours: 120-128

The minimum total of credit hours required for this degree is 120.

- Physics (PHYS) (p. 3)
- Physics labs (PHYZ) (p. 3)

Physics

PHYS 101: Foundations of Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. For non-science majors. Introduction to the fundamental ideas of physics. The course covers selected topics in mechanics, heat, optics, electricity and magnetism and modern physics. Not applicable toward the physics major. An optional laboratory may be taken with this course. See PHYZ 101L.

PHYS 103: Elementary Astronomy. 3 Hours.
Semester course; 3 lecture hours. 3 credits. A descriptive approach to astronomy dealing with basic features of our solar system, our galaxy and the universe. Not applicable toward physics major. An optional laboratory may be taken with this course. See PHYZ 103L.
PHYS 107. Wonders of Technology. 4 Hours.
Semester course; 5 lecture/laboratory/recitation hours. 4 credits. Introduction to physics concepts involved in everyday technological applications. The course covers selected topics in mechanics, heat, optics, electricity and magnetism, and modern physics by depicting their role in common devices. The laboratory focuses on applications of physics principles to everyday real-life situations. Not applicable toward the physics major.

PHYS 201. General Physics I. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: MATH 151. Designed primarily for life-science majors. Basic concepts of motion, waves and heat. Not applicable toward the physics major.

PHYS 202. General Physics II. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: PHYS 201 or PHYS 207. Designed primarily for life-science majors. Basic concepts of electricity, magnetism, light and modern physics. Not applicable toward the physics major.

PHYS 207. University Physics I. 5 Hours.
Semester course; 3 lecture, 1 recitation and 3 laboratory hours. 5 credits. Prerequisite: MATH 200 or permission of instructor. A vector- and calculus-based introduction to the fundamental concepts of mechanics, heat and wave motion.

PHYS 208. University Physics II. 5 Hours.
Semester course; 3 lecture, 1 recitation and 3 laboratory hours. 5 credits. Prerequisite: PHYS 207. Corequisite: MATH 201. A vector- and calculus-based introduction to the fundamentals of electricity, magnetism and optics.

PHYS 215. Science, Technology and Society. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Examination of scientific breakthroughs that have led to transformational technologies that are continuing to impact society today. Topics include a historical perspective, an understanding of scientific principles and technologies and an examination of how such discoveries have changed society. Not applicable toward physics major.

PHYS 291. Topics in Physical Science. 1-3 Hours.
Semester course; 1-3 lecture or laboratory hours. 1-3 credits per semester. A study of a selected topic in physics, astronomy, geology, meteorology or oceanography. Not applicable toward physics major. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 301. Classical Mechanics I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: MATH 301. Review of vector calculus. Newtonian mechanics: single particle, oscillations, motion under central forces and dynamics of a systems of particles.

PHYS 302. Classical Mechanics II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Motion in noninertial frames, dynamics of rigid bodies, coupled oscillators, continuous systems and wave equations in one dimension.

PHYS 307. The Physics of Sound and Music. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: A 100- or 200-level physics course or equivalent and the ability to read music or sing or play a musical instrument, or permission of instructor. Basics of the physics of waves and sound. Fourier synthesis, tone quality, human ear and voice, musical temperament and pitch, physics of musical instruments, electronic synthesizers, sound recording and reproduction, room and auditorium acoustics. Not applicable toward the physics major. Crosslisted as: MHIS 307.

PHYS 315. Energy and the Environment. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to non-physics majors with junior or senior standing; not applicable to the physics major. A study of society's demands for energy, how it is currently being met, the environmental consequences thereof and some discussion of alternatives. Crosslisted as: ENVS 315.

PHYS 320. Modern Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: MATH 301. Foundations of modern physics including special relativity, thermal radiation and quantization, wave-particle duality of radiation and matter, Schroedinger equation, atomic, nuclear and particle physics, and molecular structure and spectra. A continuation of PHYS 208.

PHYS 325. Visualization of Physics Using Mathematica. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: PHYS 301 or PHYS 320. Visualization of various areas of physics using the Mathematica language for performing numerical calculations and producing graphics and animations. Examples will be taken from classical mechanics, classical electromagnetism, modern physics, statistical mechanics and condensed matter physics.

PHYS 335. Experimental Skills for Physicists. 3 Hours.
Semester course; 2 lecture and 2 laboratory hours. 3 credits. Prerequisites: PHYS 320 and PHYZ 320. Practical skills in experimental physics, including use of micro controllers, sensor modules, high-precision positions and opto-electronics. Skills will be used to address engaging and current real-world challenges.

PHYS 340. Statistical Mechanics and Thermodynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Microscopic theory of temperature, heat and entropy, kinetic theory, multicomponent systems, and quantum statistics. Mathematical relationships of thermodynamics.

PHYS 351. Guided Inquiry for University Physics I. 1.5 Hour.
Semester course; 1 lecture and 1 recitation hour. 1.5 credits. Prerequisites: PHYS 207 and permission of instructor. Student learning assistants aid in recitation sections of PHYS 207 University Physics I using guided inquiry and group-based activities. Further develops the core skills of PHYS 207. Introduces students to the principles of active and collaborative learning in physics through practical, hands-on problem-solving, class discussions and demonstrations.

PHYS 352. Guided Inquiry for University Physics II. 1.5 Hour.
Semester course; 1 lecture and 1 recitation hour. 1.5 credits. Prerequisites: PHYS 208 and permission of instructor. Student learning assistants aid in recitation sections of PHYS 208 University Physics II using guided inquiry and group-based activities. Further develops the core skills of PHYS 208. Introduces students to the principles of active and collaborative learning in physics through practical, hands-on problem-solving, class discussions and demonstrations.
PHYS 376. Electromagnetism. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Electrostatics, magnetism and electromagnetic properties of matter, Maxwell's equations, electromagnetic waves, boundary conditions, and polarization.

PHYS 377. Electromagnetism II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 376. Advanced topics in electromagnetism, such as the microscopic theory of magnetism, slowly varying currents, physics of plasmas, electromagnetic properties of superconductors, Maxwell's equations and propagation of electromagnetic waves in bounded media, dispersive media, electromagnetic radiation, electrodynamics of moving charges, and the relativistic formulation of electrodynamics.

PHYS 380. Quantum Physics I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301, PHYS 320 and MATH 301, or permission of instructor. Brief introduction to the correspondence between classical and quantum mechanics, Schrödinger wave equation, operator methods in quantum mechanics, angular momentum and conservation laws, solution to harmonic oscillator and the hydrogen atom, magnetic dipole momentum and spin.

PHYS 391. Topics in Physics. 1-3 Hours.
Semester course; 1-3 lecture hours. 1-3 credits per semester. Maximum total of 6 credits. In-depth study of a selected topic in physics or physics-related technology, usually at a level requiring only elementary algebra. Not applicable toward physics major. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 397. Directed Study. 1-3 Hours.
Semester course; variable hours. 1-3 credits per semester. Maximum of 3 credits applicable toward physics major requirement; maximum total of 4 credits. Open to nonmajors. Determination of amount of credit and permission of instructor must be obtained before registration of course. Intended to allow nonmajors and majors to examine in detail an area of physics or physics-related technology not otherwise available in upper-level courses. May involve either directed readings or directed laboratory work.

PHYS 420. Quantum Physics II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 380 or permission of instructor. Transition rates, addition of angular momentum, multi-electron atoms-ground state, X-ray and optical excitations, time independent perturbation theory, relativistic hydrogen atom and the structure of atoms, collision theory, nuclear structure, elementary particles and their symmetries.

PHYS 422. Optics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 376 or permission of instructor. Comprehensive study of propagation of light, including geometrical optics, polarization, interference, diffraction, Fourier optics and quantum optics.

PHYS 440. Introduction to Condensed Matter Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 340 and 380. Corequisite: PHYS 376. Structure and bonding in solids, phonons, free electron Fermi gas, energy bands, semiconductors, Fermi surface, optical properties and magnetism.

PHYS 450. Senior Physics Laboratory. 3 Hours.
Semester course; 1 lecture and 4 laboratory hours. 3 credits. Prerequisites: PHYS 301 and 320, and PHYS 376. Experiments in condensed matter physics with an introduction to the instrumentation and data analysis used in the research laboratory.

PHYS 480. Particle Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 340, PHYS 376 and PHYS 420. Basic concepts of particle physics, including the Dirac equation, lowest-order quantum electrodynamics calculations, scattering amplitudes and cross sections, the weak interaction, processes involving quarks and their symmetries, and quantum chromodynamics.

PHYS 483. Introduction to Astrophysics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 320 and PHYS 340. Pre- or corequisites: PHYS 376 and PHYS 380. Basic concepts of star formation and evolution, galactic structures, and cosmology. Includes stellar atmospheres and interiors, the sun, the Milky Way and other galaxies, and black holes.

PHYS 490. Seminar in Conceptual Physics. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisites: PHYS 340, PHYS 376, PHYS 380 and PHYSZ 320. Restricted to seniors in physics with at least 85 credit hours taken toward the degree. A senior capstone course in physics designed to help students formulate physics-related questions in such a way that they can obtain quantitative answers. Students will describe their results in a senior paper and in an oral presentation.

PHYS 491. Topics in Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Maximum of 3 credits applicable toward physics major requirement; maximum total of 6 credits. An in-depth study of a selected topic in physics. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 492. Independent Study. 1-3 Hours.
Semester course; variable hours. 1-3 credits per semester. Maximum of 3 credits applicable toward physics major requirement; maximum total of 8 credits. Open generally to students of only junior or senior standing who have acquired at least 12 credits in the departmental discipline. Determination of the amount of credit and permission of instructor and department chair must be procured prior to registration of the course. Independent projects in experimental or theoretical physics.

Physics labs

PHYZ 101. Foundations of Physics Laboratory. 1 Hour.
Semester course; 2 laboratory hours. 1 credit. Corequisite: PHYS 101. An optional laboratory consisting of experiments and activities correlated with PHYS 101.

PHYZ 103. Elementary Astronomy Laboratory. 1 Hour.
Semester course; 2 laboratory hours. 1 credit. Pre- or corequisite: PHYS 103. An optional laboratory course consisting of experiments and activities related to PHYS 103.

PHYZ 320. Modern Physics Laboratory. 1 Hour.
Semester course; 3 laboratory hours. 1 credit. Pre- or corequisite: PHYS 320. Experimental work correlated with PHYS 320.