PHYSICS, BACHELOR OF SCIENCE (B.S.)

The Bachelor of Science in Physics requires a minimum of 120 credits, including 54 credits in physics and physics-related courses, as detailed in the course lists.

The curriculum in physics prepares students for technical careers in physics or an allied area, for careers in engineering and for the teaching of physics in secondary schools. The curriculum also prepares students for graduate studies in physics or a related area.

Learning outcomes
Students will learn to perform scientific reasoning and complex problem-solving. Physics majors will receive a fundamental understanding of the main areas of physics so that they are prepared for jobs that use physics-based technologies. They are expected to have mastered the analytical approach to solving technical problems by identifying simple subsystems that obey known physical laws and using these laws to approximate the behavior of the whole system.

Double major in engineering and physics
A detailed description of this program (http://bulletin.vcu.edu/undergraduate/engineering/double-major-physics) can be found in the "School of Engineering" section of this bulletin.

Degree requirements for Physics, Bachelor of Science (B.S.)

General education requirements
University Core Education Curriculum (minimum 21 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIV 111 Play course video for Focused Inquiry I</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 112 Play course video for Focused Inquiry II</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 200 Inquiry and the Craft of Argument</td>
<td>3</td>
</tr>
</tbody>
</table>

Approved humanities/fine arts | 3
Approved natural/physical sciences | 3-4
Approved quantitative literacy | 3-4
Approved social/behavioral sciences | 3-4

Total Hours | 21-24

Additional College of Humanities and Sciences requirements (11-23 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMS 202 Choices in a Consumer Society</td>
<td>1</td>
</tr>
<tr>
<td>Approved H&S diverse and global communities</td>
<td>3</td>
</tr>
<tr>
<td>Approved H&S human, social and political behavior (fulfills University Core social/behavioral sciences)</td>
<td>3</td>
</tr>
<tr>
<td>Approved H&S literature and civilization (fulfills University Core humanities/fine arts)</td>
<td>3</td>
</tr>
<tr>
<td>Approved H&S science and technology (fulfills University Core natural/physical sciences)</td>
<td>3</td>
</tr>
<tr>
<td>Approved H&S general education electives</td>
<td>6-8</td>
</tr>
<tr>
<td>Experiential fine arts</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Total Hours | 11-23

Major requirements

Required physics courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 207 University Physics I</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 208 University Physics II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 301 Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 320 Modern Physics</td>
<td>4</td>
</tr>
<tr>
<td>& PHYZ 320 and Modern Physics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 340 Statistical Mechanics and Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 376 Electromagnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 380 Quantum Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 450 Senior Physics Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 490 Seminar in Conceptual Physics (capstone)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Hours | 39

Elective physics and physics-related courses

Select a total of nine credits from the list of elective physics and physics-related courses provided below. Those students who have their primary major in physics are required to fulfill at least three of these credits using upper-level physics courses.

Total Hours | 9

Open electives

Select 20-34 open elective credits | 20-34

Total minimum requirement 120 credits

Electives

Any of the following upper-level physics courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 302 Classical Mechanics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 325 Visualization of Physics Using Mathematica</td>
<td></td>
</tr>
<tr>
<td>PHYS 351 Guided Inquiry for University Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 352 Guided Inquiry for University Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 397 Directed Study (maximum of 3 credits)</td>
<td></td>
</tr>
<tr>
<td>PHYS 420 Quantum Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 422 Optics</td>
<td></td>
</tr>
<tr>
<td>PHYS 440 Introduction to Condensed Matter Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 480 Particle Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 483 Introduction to Astrophysics</td>
<td></td>
</tr>
</tbody>
</table>
Physics, Bachelor of Science (B.S.)

- **PHYS 491** Topics in Physics (maximum of 3 credits)
- **PHYS 492** Independent Study (maximum of 3 credits)
- **PHYS 514** Modeling Biocomplexity
- **PHYS 522** Optics and Laser Physics
- **PHYS 571** Theoretical Mechanics
- **PHYS 573** Analytical Methods in Physics
- **PHYS 576** Electromagnetic Theory
- **PHYS 580** Quantum Mechanics
- **PHYS 583** Geometrical Methods of Physics and Gravitation

Any of the following math or statistics courses:
- **MATH 310** Linear Algebra
- **MATH 415** Numerical Methods
- **MATH 433** Partial Differential Equations
- **MATH 511** Applied Linear Algebra
- **STAT 441** Applied Statistics for Engineers and Scientists

Any of the following chemistry courses:
- **CHEM 409** Instrumental Analysis
- **CHEM 510** Atomic and Molecular Structure

Any of the following engineering courses:
- **CLSE 301** Transport Phenomena I
- **CLSE 302** Transport Phenomena II
- **EGMN 301** Fluid Mechanics
- **EGMN 309** Material Science for Engineers
- **EGMN 351** Nuclear Engineering Fundamentals
- **EGMN 352** Nuclear Reactor Theory
- **EGRB 427** Biomaterials
- **EGRE 303** Electronic Devices
- **EGRE 306** Introduction to Microelectronics
- **EGRE 307** Integrated Circuits
- **EGRE 310** Microwave and Photonic Engineering
- **EGRE 334** Introduction to Microfabrication
- **EGRE 521** Advanced Semiconductor Devices

Those students intending to pursue graduate studies in physics should take:
- **PHYS 302** Classical Mechanics II
- **PHYS 325** Visualization of Physics Using Mathematica
- **PHYS 420** Quantum Physics II
- **PHYS 440** Introduction to Condensed Matter Physics
- **PHYS 480** Particle Physics
- **PHYS 483** Introduction to Astrophysics
- **PHYS 514** Modeling Biocomplexity
- **PHYS 522** Optics and Laser Physics
- **PHYS 571** Theoretical Mechanics
- **PHYS 573** Analytical Methods in Physics
- **PHYS 576** Electromagnetic Theory
- **PHYS 580** Quantum Mechanics
- **PHYS 583** Geometrical Methods of Physics and Gravitation

Those interested in experimental physics should also take one or more credits in PHYS 397 or PHYS 492.

Courses not applicable toward the major:

The following courses are not applicable toward the physics major requirements but may be used as general electives toward the bachelor's degree:
- **PHYS 101** Foundations of Physics
- **PHYS 103** Elementary Astronomy
- **PHYS 107** Wonders of Technology
- **PHYS 201** General Physics
- **PHYS 202** General Physics
- **PHYS 215** Science, Technology and Society
- **PHYS 291** Topics in Physical Science
- **PHYS/MHIS 307** The Physics of Sound and Music
- **PHYS/ENVS 315** Energy and the Environment
- **PHYS 391** Topics in Physics
- **PHYZ 101** Foundations of Physics Laboratory
- **PHYZ 103** Elementary Astronomy Laboratory

What follows is a sample plan that meets the prescribed requirements within a four-year course of study at VCU. Please contact your adviser before beginning course work toward a degree.

Freshman year

Fall semester
- **MATH 200** Calculus with Analytic Geometry 4
- **UNIV 111** Play video for Focused Inquiry I 3
- **General Education requirements** 8

Term Hours: 15

Spring semester
- **MATH 201** Calculus with Analytic Geometry 4
- **PHYS 207** University Physics I 5
- **UNIV 112** Play course video for Focused Inquiry II 3
- **General Education requirements** (including HUMS 202 Choices in a Consumer Society) 3

Term Hours: 15

Sophomore year

Fall semester
- **MATH 307** Multivariate Calculus 4
- **PHYS 208** University Physics II 5
- **UNIV 200** Play video for Inquiry and the Craft of Argument 3
- **General Education requirements** 3

Term Hours: 15

Spring semester
PHYS 101. Foundations of Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. For non-science majors. Introduction to the fundamental ideas of physics. The course covers selected topics in mechanics, heat, optics, electricity and magnetism and modern physics. Not applicable toward the physics major. An optional laboratory may be taken with this course. See PHYZ 101L.

PHYS 103. Elementary Astronomy. 3 Hours.
Semester course; 3 lecture hours. 3 credits. A descriptive approach to astronomy dealing with basic features of our solar system, our galaxy and the universe. Not applicable toward physics major. An optional laboratory may be taken with this course. See PHYZ 103L.

PHYS 107. Wonders of Technology. 4 Hours.
Semester course; 5 lecture/laboratory/recitation hours. 4 credits. Introduction to physics concepts involved in everyday technological applications. The course covers selected topics in mechanics, heat, optics, electricity and magnetism, and modern physics by depicting their role in common devices. The laboratory focuses on applications of physics principles to everyday real-life situations. Not applicable toward the physics major.

PHYS 201. General Physics. 4 Hours.
Continuous courses; 3 lecture and 3 laboratory hours. 4-4 credits. Prerequisite: MATH 151. Completion of PHYS 201 to enroll in PHYS 202. Designed primarily for life-science majors. First semester: basic concepts of motion, waves and heat. Second semester: basic concepts of electricity, magnetism, light and modern physics. Not applicable toward physics major.

PHYS 202. General Physics. 4 Hours.
Continuous courses; 3 lecture and 3 laboratory hours. 4-4 credits. Prerequisite: MATH 151. Completion of PHYS 201 to enroll in PHYS 202. Designed primarily for life-science majors. First semester: basic concepts of motion, waves and heat. Second semester: basic concepts of electricity, magnetism, light and modern physics. Not applicable toward physics major.

PHYS 207. University Physics I. 5 Hours.
Semester course; 3 lecture, 1 recitation and 3 laboratory hours. 5 credits. Prerequisite: MATH 200 or permission of instructor. A vector- and calculus-based introduction to the fundamental concepts of mechanics, heat and wave motion.

PHYS 208. University Physics II. 5 Hours.
Semester course; 3 lecture, 1 recitation and 3 laboratory hours. 5 credits. Prerequisite: PHYS 207. Corequisite: MATH 201. A vector- and calculus-based introduction to the fundamentals of electricity, magnetism and optics.

PHYS 215. Science, Technology and Society. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Examination of scientific breakthroughs that have led to transformational technologies that are continuing to impact society today. Topics include a historical perspective, an understanding of scientific principles and technologies and an examination of how such discoveries have changed society. Not applicable toward physics major.

PHYS 291. Topics in Physical Science. 1-3 Hours.
Semester course; 1-3 lecture or laboratory hours. 1-3 credits per semester. A study of a selected topic in physics, astronomy, geology, meteorology or oceanography. Not applicable toward physics major. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 301. Classical Mechanics I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: MATH 301. Review of vector calculus. Newtonian mechanics: single particle, oscillations, motion under central forces and dynamics of a systems of particles.

PHYS 302. Classical Mechanics II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Motion in noninertial frames, dynamics of rigid bodies, coupled oscillators, continuous systems and wave equations in one dimension.

PHYS 307. The Physics of Sound and Music. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: A 100- or 200-level physics course or equivalent and the ability to read music or sing or play a musical instrument, or permission of instructor. Basics of the physics of waves and sound. Fourier synthesis, tone quality, human ear and voice, musical temperament and pitch, physics of musical instruments, electronic synthesizers, sound recording and reproduction, room and auditorium acoustics. Not applicable toward the physics major. Crosslisted as: MHIS 307.
PHYS 315. Energy and the Environment. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to non-physics majors with junior or senior standing; not applicable to the physics major. A study of society's demands for energy, how it is currently being met, the environmental consequences thereof and some discussion of alternatives. Crosslisted as: ENVS 315.

PHYS 320. Modern Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 208 and MATH 307. Corequisite: MATH 301. Foundations of modern physics including special relativity, thermal radiation and quantization, wave-particle duality of radiation and matter, Schroedinger equation, atomic, nuclear and particle physics, and molecular structure and spectra. A continuation of PHYS 208.

PHYS 325. Visualization of Physics Using Mathematica. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 301, PHYS 320 or permission of instructor. Visualization of various areas of physics using the Mathematica language for performing numerical calculations and producing graphics and animations. Examples will be taken from classical mechanics, classical electromagnetism, modern physics, statistical mechanics and condensed matter physics.

PHYS 340. Statistical Mechanics and Thermodynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Microscopic theory of temperature, heat and entropy, kinetic theory, multicomponent systems, and quantum statistics. Mathematical relationships of thermodynamics.

PHYS 351. Guided Inquiry for University Physics I. 1.5 Hour.
Semester course; 1 lecture and 1 recitation hour. 1.5 credits. Prerequisites: PHYS 207 and permission of instructor. Student learning assistants aid in recitation sections of PHYS 207 University Physics I using guided inquiry and group-based activities. Further develops the core skills of PHYS 207. Introduces students to the principles of active and collaborative learning in physics through practical, hands-on problem-solving, class discussions and demonstrations.

PHYS 352. Guided Inquiry for University Physics II. 1.5 Hour.
Semester course; 1 lecture and 1 recitation hour. 1.5 credits. Prerequisites: PHYS 208 and permission of instructor. Student learning assistants aid in recitation sections of PHYS 208 University Physics II using guided inquiry and group-based activities. Further develops the core skills of PHYS 208. Introduces students to the principles of active and collaborative learning in physics through practical, hands-on problem-solving, class discussions and demonstrations.

PHYS 376. Electromagnetism. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301 and MATH 301. Electrostatics, magnetism and electromagnetic properties of matter, Maxwell's equations, electromagnetic waves, boundary conditions, and polarization.

PHYS 380. Quantum Physics I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 301, PHYS 320 and MATH 301, or permission of instructor. Brief introduction to the correspondence between classical and quantum mechanics, Schroedinger wave equation, operator methods in quantum mechanics, angular momentum and conservation laws, solution to harmonic oscillator and the hydrogen atom, magnetic dipole momentum and spin.

PHYS 391. Topics in Physics. 1-3 Hours.
Semester course; 1-3 lecture hours. 1-3 credits per semester. Maximum total of 6 credits. In-depth study of a selected topic in physics or physics-related technology, usually at a level requiring only elementary algebra. Not applicable toward physics major. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 397. Directed Study. 1-3 Hours.
Semester course; variable hours. 1-3 credits per semester. Maximum of 3 credits applicable toward physics major requirement; maximum total of 4 credits. Open to nonmajors. Determination of amount of credit and permission of instructor must be obtained before registration of course. Intended to allow nonmajors and majors to examine in detail an area of physics or physics-related technology not otherwise available in upper-level courses. May involve either directed readings or directed laboratory work.

PHYS 420. Quantum Physics II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 380 or permission of instructor. Transition rates, addition of angular momentum, multi-electron atoms-ground state, X-ray and optical excitations, time independent perturbation theory, relativistic hydrogen atom and the structure of atoms, collision theory, nuclear structure, elementary particles and their symmetries.

PHYS 422. Optics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: PHYS 376 or permission of instructor. Comprehensive study of propagation of light, including geometrical optics, polarization, interference, diffraction, Fourier optics and quantum optics.

PHYS 440. Introduction to Condensed Matter Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 340 and 380. Corequisite: PHYS 376. Structure and bonding in solids, phonons, free electron Fermi gas, energy bands, semiconductors, Fermi surface, optical properties and magnetism.

PHYS 450. Senior Physics Laboratory. 3 Hours.
Semester course; 1 lecture and 4 laboratory hours. 3 credits. Prerequisites: PHYS 301 and 320, and PHYZ 320. Experiments in condensed matter physics with an introduction to the instrumentation and data analysis used in the research laboratory.

PHYS 480. Particle Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 340, PHYS 376 and PHYS 420. Basic concepts of particle physics, including the Dirac equation, lowest-order quantum electrodynamics calculations, scattering amplitudes and cross sections, the weak interaction, processes involving quarks and their symmetries, and quantum chromodynamics.

PHYS 483. Introduction to Astrophysics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 320 and PHYS 340. Prerequisites: PHYS 320 and PHYS 340. Pre- or corequisites: PHYS 376 and PHYS 380. Basic concepts of star formation and evolution, galactic structures, and cosmology. Includes stellar atmospheres and interiors, the sun, the Milky Way and other galaxies, and black holes.

PHYS 490. Seminar in Conceptual Physics. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisites: PHYS 340, PHYS 376, PHYS 380 and PHYZ 320. Restricted to seniors in physics with at least 85 credit hours taken toward the degree. A senior capstone course in physics designed to help students formulate physics-related questions in such a way that they can obtain quantitative answers. Students will describe their results in a senior paper and in an oral presentation.
PHYS 491. Topics in Physics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Maximum of 3 credits applicable toward physics major requirement; maximum total of 6 credits. An in-depth study of a selected topic in physics. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

PHYS 492. Independent Study. 1-3 Hours.
Semester course; variable hours. 1-3 credits per semester. Maximum of 3 credits applicable toward physics major requirement; maximum total of 8 credits. Open generally to students of only junior or senior standing who have acquired at least 12 credits in the departmental discipline. Determination of the amount of credit and permission of instructor and department chair must be procured prior to registration of the course. Independent projects in experimental or theoretical physics.