CHEMICAL AND LIFE SCIENCE ENGINEERING, BACHELOR OF SCIENCE (B.S.) WITH A CONCENTRATION IN LIFE SCIENCE ENGINEERING

The department offers a Bachelor of Science in Chemical and Life Science Engineering, and includes a chemical engineering concentration and a life science engineering concentration. Each student must choose the desired concentration upon initial registration.

As part of the B.S. degree in chemical and life science engineering, all students complete an approved internship or cooperative education experience.

Student learning outcomes

Upon completing this program, students will demonstrate:

1. An ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
3. An ability to communicate effectively with a range of audiences
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies
8. An understanding of the hazards associated with physical, chemical and/or biological processes

Special requirements

Students must receive a grade of C in all engineering courses in order to graduate. Minimum grades of C in CLSE 115, CLSE 201 and CLSE 202 are required before students may take additional CLSE courses. After passing CLSE 202 with a minimum grade of C, students are allowed to continue with one D grade in any CLSE course. They must retake that course in order to graduate, but may continue taking other CLSE courses. Students are not allowed to continue with two grades of D in CLSE courses and must successfully retake at least one of those courses with a minimum grade of C to take additional 300- and 400-level CLSE courses.

Degree requirements for Chemical and Life Science Engineering, Bachelor of Science (B.S.) with a concentration in life science engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 12 credits from general education foundations and 18 credits from areas of inquiry.</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Major requirements

- Major core requirements
 - CLSE 101 Introduction to Engineering 3
 - CLSE 115 Introduction to Programming for Chemical and Life Science Engineering 4
 - CLSE 201 Chemical Engineering Fundamentals I: Material Balances 4
 - CLSE 202 Chemical Engineering Fundamentals II: Energy Balances and Engineering Thermodynamics 4
 - CLSE 301 Transport Phenomena I 3
 - CLSE 302 Transport Phenomena II 4
 - CLSE 305 Thermodynamics of Phase Equilibria and Chemical Reactions 3
 - CLSE 312 Chemical Reaction Engineering 3
 - CLSE 320 Instrumentation Laboratory 3
 - CLSE 402 Senior Design Studio I (Laboratory/Project Time) 2
 - CLSE 403 Senior Design Studio II (Laboratory/Project Time) 2
 - CLSE 409 Process Control in Chemical and Life Science Engineering 3
 - CLSE 440 Unit Operations Laboratory 3
 - ENGR 395 Professional Development 1
 - ENGR 402 Senior Design Studio (Seminar) 1
 - ENGR 403 Senior Design Studio (Seminar) 1

- Additional major requirements
 - Approved internship or cooperative education experience 0
 - ENGR 296 or ENGR 396 Part-time Internship Experience
 - ENGR 398 Internship Experience
 - ENGR 496 or ENGR 498 Cooperative Education Experience

Review of internship or cooperative education experience 0

- Major electives
 - Select engineering electives as described below.

Ancillary requirements

- BIOL 151 & BIOZ 151 Introduction to Biological Sciences I and Introduction to Biological Science Laboratory I 4
- BIOL 152 Introduction to Biological Sciences II 3
- CHEM 101 General Chemistry I (satisfies general education BOK for natural sciences and AOI for scientific and logical reasoning) 3
- CHEZ 101 General Chemistry Laboratory I 1
Chemical and Life Science Engineering, Bachelor of Science (B.S.) with a concentration in life science engineering

- CHEM 102 & CHEZ 102: General Chemistry II and General Chemistry Laboratory II (4 credit hours)
- CHEM 301 & CHEZ 301: Organic Chemistry and Organic Chemistry Laboratory I (5 credit hours)
- CHEM 302 & CHEZ 302: Organic Chemistry and Organic Chemistry Laboratory II (5 credit hours)
- CHEM 403: Biochemistry I (3 credit hours)
- ECON 205: The Economics of Product Development and Markets (satisfies general education BOK for social/behavioral sciences and AOI for global perspectives) (3 credit hours)
- MATH 200: Calculus with Analytic Geometry I (satisfies general education quantitative foundations) (4 credit hours)
- MATH 201: Calculus with Analytic Geometry II (4 credit hours)
- MATH 301: Differential Equations (3 credit hours)
- MATH 307: Multivariate Calculus (4 credit hours)
- PHIL 201: Introduction to Ethics (satisfies general education BOK for humanities/fine arts and AOI for diversities in the human experience) (3 credit hours)
- PHYS 207: University Physics I (satisfies general education BOK for natural sciences and AOI for natural sciences and mathematical reasoning) (5 credit hours)
- PHYS 208: University Physics II (5 credit hours)
- STAT 441: Applied Statistics for Engineers and Scientists (3 credit hours)

Total Hours: 127

The minimum number of credit hours required for this degree is 127.

Engineering electives
Engineering electives are satisfied by completing courses that meet all of the following criteria:

1. 300-level or greater
2. Offered in the College of Engineering (CLSE, CMSC, EGMN, EGRB, EGRG, EGRM, EGRN or ENGR)
3. Offered for three or more credit hours
4. Not otherwise required for the major by the effective Bulletin

Note: A minimum of four credits of ENGR 497 must be completed to satisfy an engineering elective requirement. Other courses may be used to satisfy the requirements with prior written approval from the department chair.

What follows is a sample plan that meets the prescribed requirements within a four-year course of study at VCU. Please contact your adviser before beginning course work toward a degree.

Freshman year
Fall semester
- CHEM 101: General Chemistry I (satisfies general education BOK for natural sciences and AOI for scientific and logical reasoning) (3 credit hours)
- CHEZ 101: General Chemistry Laboratory I (1 credit hour)
- CLSE 101: Introduction to Engineering (3 credit hours)

Spring semester
- CHEM 102 & CHEZ 102: General Chemistry II and General Chemistry Laboratory II (4 credit hours)
- CLSE 115: Introduction to Programming for Chemical and Life Science Engineering (4 credit hours)
- ENGR 395: Professional Development (1 credit hour)
- MATH 201: Calculus with Analytic Geometry II (4 credit hours)
- MATH 301: Differential Equations (3 credit hours)
- MATH 307: Multivariate Calculus (4 credit hours)
- PHYS 207: University Physics I (satisfies general education BOK for natural sciences and AOI for natural sciences and mathematical reasoning) (5 credit hours)
- PHYS 208: University Physics II (5 credit hours)
- STAT 441: Applied Statistics for Engineers and Scientists (3 credit hours)

Summer semester
- ENGR 396 or ENGR 398: Internship Experience or Cooperative Education Experience (0 credit hours)

Junior year
Fall semester
- BIOL 151 & BIOZ 151: Introduction to Biological Sciences I and Introduction to Biological Science Laboratory I (4 credit hours)
- CLSE 301: Transport Phenomena I (3 credit hours)
- CLSE 305: Thermodynamics of Phase Equilibria and Chemical Reactions (3 credit hours)
opportunities, greater potential for job advancement and higher starting salaries.

Admission to the program

The minimum qualifications for admittance to the program include completion of 99 undergraduate credit hours including CLSE 301, CLSE 302, CLSE 305, CLSE 312, and CLSE 320; a minimum overall GPA of 3.0; and a GPA of 3.2 in chemical and life science engineering (CLSE) course work. Successful applicants will enter the program in the fall semester of their senior year.

Undergraduate students must have departmental approval to participate in an accelerated program and must apply for admission to the master’s program prior to beginning their final year of full-time undergraduate study. The entry term for the master’s program will be the next available admission term following the last semester of undergraduate study. Admission to the master’s program is provisional until the undergraduate degree has been conferred. Upon completion and conferral of the undergraduate degree, students are fully admitted to the master’s program.

Candidates should submit applications for admission immediately following the spring of their junior year, but no later than June 15 of that year. One reference letter from a chemical and life science engineering faculty member must accompany the application. The GRE is waived for admission to the program. Students who are interested in the accelerated program should consult with the graduate program director before they have completed 99 credits.

Once admitted into the accelerated program, students must meet the standards of performance applicable to graduate students as described in the “Satisfactory academic progress (http://bulletin.vcu.edu/academicregs/grad/satisfactory-academic-progress/)” section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the CLSE undergraduate program director and the CLSE graduate program director.

Degree requirements

The Bachelor of Science in Chemical and Life Science Engineering degree will be awarded upon completion of a minimum of 126 credits and the satisfactory completion of all undergraduate degree requirements as stated in the Undergraduate Bulletin.

A maximum of six graduate credits may be taken prior to completion of the baccalaureate degree. These graduate credits will apply as required major electives or open elective credits (engineering electives) for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

Examples of graduate chemical and life science engineering courses that may be taken as an undergraduate, once a student is admitted to the program, are:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLSE 543</td>
<td>Advanced Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 544</td>
<td>Applied Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 549</td>
<td>Process Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 551</td>
<td>Nanotoxicology</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 560</td>
<td>Protein Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 561</td>
<td>Stem Cell Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

The minimum number of credit hours required for this degree is 127.

The accelerated B.S. and M.S. program allows qualified students to earn both the B.S. and M.S. in Chemical and Life Science Engineering in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to six hours of graduate courses toward both the B.S. and M.S. degrees. Thus, the two degrees may be earned with a minimum of 150 credits rather than the 156 credits necessary if the two degrees are pursued separately.

Students holding these degrees will have a head start for pursuing careers in industry or continuing in an academic setting. The M.S. degree provides formal research experience and can lead to expanded job opportunities, greater potential for job advancement and higher starting salaries.
Recommended course sequence/plan of study

What follows is the recommended plan of graduate study for students interested in the accelerated program beginning in the fall of the senior year.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required B.S. course work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLSE 402</td>
<td>Senior Design Studio I (Laboratory/Project Time)</td>
<td>2</td>
</tr>
<tr>
<td>CLSE 409</td>
<td>Process Control in Chemical and Life Science Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 440</td>
<td>Unit Operations Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 402</td>
<td>Senior Design Studio (Seminar)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 496</td>
<td>Internship Review</td>
<td>0</td>
</tr>
<tr>
<td>PHIL 201</td>
<td>Introduction to Ethics</td>
<td>3</td>
</tr>
<tr>
<td>Engineering elective - CLSE 5xx (from list above)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Term Hours:</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required B.S. course work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 101</td>
<td>Introduction to Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 403</td>
<td>Senior Design Studio (Seminar)</td>
<td>1</td>
</tr>
<tr>
<td>CLSE 403</td>
<td>Senior Design Studio II (Laboratory/Project Time)</td>
<td>2</td>
</tr>
<tr>
<td>Engineering elective (300+ level)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Engineering elective - CLSE 5xx (from list above)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Term Hours:</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Fifth year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLSE 650</td>
<td>Quantitative Analysis in Chemical and Life Science Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 655</td>
<td>Nonequilibrium Analysis in Chemical and Life Science Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Graduate electives (500 and 600 level)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Term Hours:</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLSE 654</td>
<td>Equilibrium Analysis in Chemical and Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>CLSE 656</td>
<td>Advanced Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Graduate electives (500 and 600 level)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Term Hours:</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

For example: 500-level (or higher) CLSE, ENGR, PESC, PCEU, EGRB, CHEM, NANO, PHYS, MATH, BIOL, PHIS or BIOC courses

- Chemical and life science engineering (p. 4)
- Engineering (p. 6)

Chemical and life science engineering

CLSE 101. Introduction to Engineering. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits.
Prerequisites: course open to first-year students majoring in chemical and life science engineering. Introduction to chemical and life science engineering. Topics covered include ethics and social responsibility; engineering design process; engineering solutions; estimations and approximations; dimensions, units and conversions; mathematics and computer solutions; life-long learning; introduction to the interface between engineering, biology and medicine.

CLSE 102. Methods in CLSE. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisite: CLSE 101. An introduction to problem formulation and solution methods for chemical and life science engineering. Typical chemical and life science engineering scenarios will be presented. Emphasis will be placed on identifying and formulating problems based on presented scenarios.

CLSE 115. Introduction to Programming for Chemical and Life Science Engineering. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: MATH 200. Introduction to the concepts and practice of structured programming. Topics include problem-solving, top-down design of algorithms, objects, basic syntax, control structures, functions and arrays.

CLSE 201. Chemical Engineering Fundamentals I: Material Balances. 4 Hours.
Semester course; 3 lecture and 1 recitation hours. 4 credits. Prerequisites: CLSE 115, CHEM 101 and CHEM 102, and MATH 200 and MATH 201, or equivalents, all with minimum grades of C. The first of two introductory chemical and life science engineering courses. Covers material balances on steady-state chemical processes.

CLSE 202. Chemical Engineering Fundamentals II: Energy Balances and Engineering Thermodynamics. 4 Hours.
Semester course; 3 lecture and 1 recitation hours. 4 credits. Prerequisites: CLSE 201 with a minimum grade of C, CHEM 101-102 and MATH 200-201 or equivalents. The second of two introductory chemical and life science engineering courses. Covers energy balances on steady-state chemical processes, computer-aided balance calculations, balances on transient processes and introduction to thermodynamics.

CLSE 301. Transport Phenomena I. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CLSE 202 with a minimum grade of C; PHYS 208 and MATH 301. Basic concepts of transport phenomena as applied to chemical and life science engineering. Topics include transport of mass momentum and energy in single and multidimensions.

CLSE 302. Transport Phenomena II. 4 Hours.
Semester course; 3 lecture and 1 recitation hours. 4 credits. Prerequisites: CLSE 301 and CLSE 305. Concepts of transport phenomena as applied to chemical and life science engineering. Topics include advanced multicomponent, multiphase systems, integral analysis, and an integrated view of momentum, heat and mass transport in unit operations.
CLSE 305. Thermodynamics of Phase Equilibria and Chemical Reactions. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CLSE 202 with a minimum grade of C and MATH 307. Thermodynamic properties of fluids and mixtures, partial molar quantities, phase equilibria, activity coefficients and correlations, equations-of-state, chemical reaction equilibria for liquid, vapor and multiphase reactions, and the use of equations-of-state and activity/fugacity correlations to obtain the thermodynamic functions required for the calculation of chemical reaction equilibrium constants. Computing using Excel VBA is a required component of this course.

CLSE 306. Industrial Applications of Inorganic Chemistry. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CHEM 302 and CHEZ 302. Chemical engineering students: EGRC 201 and EGRC 205. A study and analysis of the most important industrial applications of inorganic chemistry, with emphasis on structure/properties correlation, materials and energy balance, availability and logistics of starting materials, economic impact and environmental effects. Crosslisted as: CHEM 306.

CLSE 312. Chemical Reaction Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CLSE 301 and 305. Introduces the student to the analysis of reactors via coupling of empirical reaction rates and thermodynamic constraints with reactor material and energy balances. The behavior of the ideal reactor types (batch, CSTR and PFR) is emphasized with attention given to departure from these ideals by real systems.

CLSE 320. Instrumentation Laboratory. 3 Hours.
Semester course; 1 lecture and 6 laboratory hours. 3 credits. Prerequisites: CLSE 301 and CLSE 305. This laboratory introduces students to a variety of measurement instruments used in modern chemical engineering laboratories and process plants. Detailed laboratory reports are required for each of the experiments undertaken by the students.

CLSE 325. Bioengineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CLSE 201 and BIOL 151 or BIOL 152. An introductory and survey level course required for all chemical engineering students. This course introduces concepts and principles of chemical engineering to problems and issues in the life sciences, biotechnology and medicine. Students apply heat and mass transfer concepts, separations and controls to topics that include clinical diagnostics, bioanalytical instrumentation, biosensors and biochips, bioprocess engineering including fermentation, biochemical pathway engineering, protein folding and aggregation, bioreactors and tissue engineering.

CLSE 402. Senior Design Studio I (Laboratory/Project Time). 2 Hours.
Semester course; 6 laboratory hours. 2 credits. Prerequisites: senior standing in chemical and life science engineering and participation in a senior design (capstone) project; CLSE 301, 302, 305 and 312. A minimum of six laboratory hours per week dedicated to the execution phase of the senior design (capstone) project, which should meet appropriate engineering standards and multiple realistic constraints. Tasks include team meetings, brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects.

CLSE 403. Senior Design Studio II (Laboratory/Project Time). 2 Hours.
Semester course; 6 laboratory hours. 2 credits. Prerequisites: senior standing in chemical and life science engineering and participation in a senior design (capstone) project; CLSE 402. A minimum of six laboratory hours per week dedicated to the execution phase of the senior design (capstone) project, which should meet appropriate engineering standards and multiple realistic constraints. Tasks include team meetings, brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects.

CLSE 405. Process Synthesis. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CLSE 302, 305 and 312. A senior technical elective. Students synthesize flowsheets for existing and newly proposed chemical and biochemical products. Quantitative tools learned in earlier courses are used to examine the technical and economic feasibility of the flowsheets. Written bi-weekly status reports are required from each student and each student completes a process synthesis and analysis as a semester project.

CLSE 409. Process Control in Chemical and Life Science Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CLSE 301 and 305. Covers process control as applied to chemical and life science engineering with many practical examples. Topics include time and frequency domain analysis, multivariable processes and applications to chemical and biochemical production and processing.

CLSE 428. Introduction to Polymer Science and Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: CLSE 302, 305 and 312, and CHEM 302, or equivalents. A senior technical elective. The course offers an introduction to the chemistry, physical properties and processing of polymers. Topics include step and chain polymerization, structure/property relationships, mechanical properties of plastics and elastomers, solution properties, methods for polymer characterization, and processing techniques.

CLSE 440. Unit Operations Laboratory. 3 Hours.
Semester course; 1 lecture and 6 laboratory hours. 3 credits. Prerequisites: CLSE 302, CLSE 305 and CHEM 302, or equivalents. A senior technical elective. Students synthesize flowsheets for existing and newly proposed chemical and biochemical products. Fluid flow networks and other unit operations. Detailed laboratory reports are required for each of the experiments undertaken.

CLSE 450. Undergraduate Research in Chemical and Life Science Engineering. 1-6 Hours.
Semester course; variable hours. Up to 6 credits. Undergraduate research under the supervision of a faculty member. Specific topics vary depending on the interests of the student and the adviser. Registration requires approval of the student's academic adviser and research adviser.

CLSE 460. Undergraduate Honors Research in Life Sciences Engineering. 1-3 Hours.
Semester course; 1-3 lecture hours. 1-3 credits. Corequisites: BIOL 218, CLSE 302. An undergraduate honors research course for academically talented juniors and seniors requiring advanced work and an honors thesis on a topic relevant to life sciences engineering. Topics and credit hours will be chosen in consultation with a sponsoring faculty member.
CLSE 461. Stem Cell Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BIOL 218, CLSE 302. The production and behavior of adult and embryonic stem cells are studied and potential applications for the treatment of disease are surveyed. Stem cell engineering techniques including parthenogenesis, nuclear transfer stem cells and embryonic carcinoma cells are introduced. The use of stem and germ cells for cloning is covered, and ethical considerations involving the use of embryonic human stem cells are discussed.

Engineering

ENGR 100. Engineering Student Success. 0 Hours.
Semester course; seminar hours. 0 credits. Enrollment is restricted to new first-year students in the School of Engineering; required for students admitted conditionally. Students will meet for a 90-minute class once per week for five weeks. The course is dedicated to helping students understand the expectations and responsibilities of being a college student. Presentations will center on planning the semester, academic professionalism, study skills and test-taking strategies, financial literacy, health and wellness, time management, and the Honor Code. Seminars will be supplemented throughout the semester with online assignments to reinforce the discussions. Graded as pass/fail.

ENGR 101. Introduction to Engineering. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: admission to the School of Engineering or permission of instructor. Introduces basic circuits including resistors, diodes, transistors, digital gates and motors. Simple electromechanical systems are considered including motors, gears and wheels. The laboratory introduces fundamental circuit testing and measurement, and proper laboratory notebook writing; students are required to analyze, build and test a digitally controlled robot.

ENGR 111. Innovation Shop Training I. 0.5 Hours.
Semester course; 1 laboratory hour. 0.5 credits. Enrollment restricted to students in the School of Engineering. The course provides training on innovation shop safety, includes a tour of the shop, measuring and layout tools and techniques, use of general manual and powered hand tools. Students will be instructed on the use of a bench-top drill press, deburring and finishing tools, 3D printing, laser engraving and thermoforming equipment. Students need to achieve a minimum score of 76% in the class to attain Level I (Blue) certification. Only certified students have permission to use tools and equipment covered in this training. Graded as Pass/Fail.

ENGR 121. Engineering Fundamentals. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: permission of instructor. Open only to non-engineering majors in Certificate in Product Innovation program. Introduces engineering fundamentals to students from non-engineering disciplines. Particular focus is the engineering problem-solving process as applied to open-ended problems. Students will be introduced to the different types of engineering, examine engineering issues and apply the engineering problem-solving process.

ENGR 211. Innovation Shop Training II. 1 Hour.
Semester course; 2 laboratory hours. 1 credit. Prerequisite: ENGR 111. Enrollment restricted to students in the School of Engineering. The course provides training on machine/innovation shop safety, blueprint reading, measuring and layout tools and techniques, and use of general and powered hand tools. Students will be instructed on sawing, sanding, drilling and tapping operations, 3D printing and laser engraving/cutting equipment. Hands-on graded assignment is the part of the course.

ENGR 291. Special Topics in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. Prerequisite: to be determined by the instructor. Specialized topics in engineering designed to provide a topic not covered by an existing course or program. General engineering or multidisciplinary. May be repeated with different content. Graded as pass/fail or normal letter grading at the option of the instructor. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

ENGR 296. Part-time Internship Experience. 0 Hours.
Semester course; 0 credit. Students may attempt this course a total of six times. Enrollment restricted to School of Engineering majors. The student works part time in an approved internship and must work a minimum of 90 hours, but less than 300 hours during the semester. The student works to meet learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor and student both complete evaluations of the learning experience. Graded pass/fail.

ENGR 303. Junior Seminar. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: permission of instructor. This course provides students an opportunity to explore business and leadership topics. Topics include the fundamentals of product design and new product development, manufacturing and quality systems, finances and financial reports, ethics in the workplace, intellectual property, teamwork, leadership and communications. Students will be assigned selected readings, written compositions and oral presentations. This course prepares the student to participate in the Engineering Laboratory/Manufacturing Internship.

ENGR 311. Innovation Shop Training III. 1 Hour.
Semester course; 2 laboratory hours. 1 credit. Prerequisite: ENGR 211. Enrollment is restricted to students with Level II (Red) certification. The Level III (Green) course provides basic training on set-up and operation of manual milling machines and the lathe. The course covers cutting tool, speed and feed calculation. Students must develop a technological process and machine metal parts per assigned drawings on vertical mill and lathe. They will also use other techniques and equipment that were covered in previous levels. Students need to achieve a minimum score of 76 % in the class to attain Level III (Green) certification. Only certified students have permission to use tools and equipment covered in this training.

ENGR 395. Professional Development. 1 Hour.
Semester course; 1 lecture and 1 workshop hour. 1 credit. Enrollment is restricted to majors in the School of Engineering. Professional development course to help prepare students to find a job and succeed in a professional environment, and specifically to work as an intern or in a cooperative education position. Topics covered include career paths; job searches; resume and cover letter writing; preparing for the interview; personal assessment of interests, values and strengths; networking; professional and ethical behavior on the job; overview of legal issues related to hiring, such as nondisclosure agreements and noncompete clauses; overview of personal finance management at the first job; workplace safety; and expectations and requirements for internships and cooperative education positions.
ENGR 396. Internship Experience. 0 Hours.
Semester course; 0 credit. Students may attempt this course a total of three times. Enrollment restricted to School of Engineering majors. The student works in an approved internship and must work a minimum of 300 hours during the semester. The student works to meet learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor and student both complete evaluations of the learning experience. Graded pass/fail.

ENGR 398. Cooperative Education Experience. 0 Hours.
Semester course; 0 credits. Students may attempt this course a total of four times. Prerequisite: ENGR 395. Restricted to School of Engineering majors in good academic standing. The student works full-time in an approved cooperative education position. The student works to meet specific learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor/mentor and student both complete midterm and final evaluations of the learning experience. Graded pass/fail.

ENGR 399. Cooperative Education Experience II. 3 Hours.
Semester course; 3 credits. Prerequisite: ENGR 398. Restricted to School of Engineering majors in good academic standing. A student that has completed at least one work term in a full-time approved cooperative education position completes an additional full-time work term. The student works to meet specific learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor/mentor and student both complete midterm and final evaluations of the learning experience.

ENGR 402. Senior Design Studio (Seminar). 1 Hour.
Continuous courses; 1 lecture hour. 1-1 credit. Prerequisites: senior standing and participation in a senior design (capstone) project; completion of ENGR 402 to enroll in ENGR 403. This weekly seminar presents and discusses topics relevant to senior-level engineering students in support of the capstone project and upcoming graduation. A single course coordinator manages and administers the course and schedules the various faculty lectures and guest speakers. Topics include, but are not limited to, the following: proposal writing, project planning and management, scheduling resources and budgeting for technical projects, patents and intellectual property, quality systems (six sigma, ISO standards, statistical process control), entrepreneurship, creativity and innovation and professional registration.

ENGR 403. Senior Design Studio (Seminar). 1 Hour.
Continuous courses; 1 lecture hour. 1-1 credit. Prerequisites: senior standing and participation in a senior design (capstone) project; completion of ENGR 402 to enroll in ENGR 403. This weekly seminar presents and discusses topics relevant to senior-level engineering students in support of the capstone project and upcoming graduation. A single course coordinator manages and administers the course and schedules the various faculty lectures and guest speakers. Topics include, but are not limited to, the following: proposal writing, project planning and management, scheduling resources and budgeting for technical projects, patents and intellectual property, quality systems (six sigma, ISO standards, statistical process control), entrepreneurship, creativity and innovation and professional registration.

ENGR 410. Review of Internship. 1 Hour.
Semester course; 1 credit. Prerequisites: chemical, electrical and computer, or mechanical engineering major and experience to satisfy the engineering internship requirements. Students complete oral presentations and written reports summarizing the internship experience.

ENGR 411. Fundamentals of Engineering Exam Preparation. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisite: senior or graduate standing, or permission of instructor. This course prepares students for taking the fundamentals of Engineering Exam. Passing the FE Exam is the first step to getting a Professional Engineering license. This course is not intended to teach the various subject matters, but to review the subject areas and help students prepare as well as possible for the examination.

ENGR 490. Engineering Seminar. 1-3 Hours.
Semester course; variable hours. 1-3 credits. May be repeated with different content. Prerequisite: permission of the instructor. A series of specialized topics in engineering that are of general interest but not covered by an existing course or program. Lectures will be presented in seminar format by speakers from business, industry, government and academia. Subjects will be multidisciplinary in nature. Graded as pass/fail or normal letter grading at the option of the instructor.

ENGR 491. Special Topics in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. Prerequisite: determined by the instructor. Specialized topics in engineering designed to provide a topic not covered by an existing course or program. General engineering or multidisciplinary. May be repeated with different content. Graded as pass/fail or normal letter grading at the option of the instructor. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

ENGR 492. Independent Study in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. May be repeated with different content. Prerequisite: permission of the instructor. Students must submit a written proposal to be approved by the supervising instructor prior to registration. Investigation of specialized engineering problems that are multidisciplinary or of general interest through literature search, mathematical analysis, computer simulation and/or laboratory experimentation. Written and oral progress reports as well as a final report and presentation are required. Graded as pass/fail or normal letter grading at the option of the instructor.

ENGR 496. Internship Review. 0 Hours.
Semester course; 0 credits. Prerequisite: ENGR 296 or ENGR 396. Restricted to School of Engineering majors. This course is to be taken following the completion of a minimum of 300 hours of approved internship experience relevant to the student's major and documents that a student has fulfilled all internship requirements, including a final evaluation by the employer, a final self-evaluation, a final report describing the experience and a final oral presentation about the experience. Graded pass/fail.

ENGR 497. Vertically Integrated Projects. 1,2 Hour.
Semester course; 3 or 6 laboratory hours. 1 or 2 credits. May be repeated for a maximum total of 8 credits Prerequisites: permission of the project faculty adviser. This course provides undergraduate students the opportunity to participate in multiyear, multidisciplinary projects under the guidance of faculty and graduate students in their areas of expertise. As they address research and development issues, students learn and practice many different professional skills, make substantial technical contributions to the project, and experience many different roles on a large, multidisciplinary design/discovery team. Students must earn a minimum of 4 credits in ENGR 497 with a minimum grade of C in order for these credits to be eligible to count toward a technical or departmental elective. More restrictive requirements may be imposed by individual departments.
ENGR 498. Review of Cooperative Education Experience. 0 Hours.
Semester course; 0 credits. Prerequisite: ENGR 398. Restricted to School of Engineering majors. This course is completed following the final work term of a cooperative education experience and is required to obtain transcript notation to document that a student has fulfilled all the requirements of the school's cooperative education program. The requirements include a final evaluation by the employer, a final self-evaluation, a final report describing the experience and a final oral presentation about the experience.