COMPUTER ENGINEERING, **BACHELOR OF SCIENCE (B.S.)**

Computer engineers are responsible for developing the powerful computer systems that have become a part of our everyday life. Applications for computer engineering span the spectrum from highperformance, general-purpose computing systems such as desktop workstations used in all facets of business, to small microprocessors embedded in larger systems and functioning as controllers. These latter applications, known as embedded systems, can be found in control systems for trains, aircraft and automobiles; medical equipment; telecommunications systems; and consumer electronics and appliances. This explosive growth of computer systems in use in almost every new appliance or vehicle has resulted in a strong demand for engineers trained in the development of these systems, and all indications are that this trend will continue for the foreseeable future.

Student learning outcomes

Upon completing this program, students will know and know how to do the following:

- 1. Identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
- 3. Communicate effectively with a range of audiences
- 4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
- 6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 7. Acquire and apply new knowledge as needed, using appropriate learning strategies

Special requirements

Program D grade policy: Students must receive a minimum grade of C in all engineering, computer science, physics, mathematics and all technical electives to graduate.

Degree requirements for Computer Engineering, Bachelor of Science (B.S.)

Course	Title	Hours
	n (https://bulletin.vcu.edu/undergraduate/ udy/general-education-curriculum/)	
Select 30 credits with an adviser.	of general education courses in consultation	30
Major requiremen	its	
Major core requirements		
CMSC 302	Introduction to Discrete Structures	3
CMSC 312	Introduction to Operating Systems	3
EGRE 101	Introduction to Engineering	3

EGRE 201	Fundamentals of Electrical and Computer Engineering	3
EGRE 206	Electric Circuits	4
EGRE 207	Electric Circuits II	4
EGRE 245	Engineering Programming	4
EGRE 246	Advanced Engineering Programming	3
EGRE 254	Digital Logic Design	4
EGRE 306	Introduction to Microelectronics	4
EGRE 335	Signals and Systems	4
EGRE 337	Statistical Information Processing	3
EGRE 347	Applied Embedded Programming	3
EGRE 364	Microcomputer Systems	4
EGRE 365	Digital Systems	4
EGRE 399	Fundamentals of Design and Analysis	3
EGRE 426	Computer Organization and Design	3
EGRE 429	Advanced Digital Systems Design and Analysis	3
EGRE 513	Fundamentals of Modern Systems Engineering	3
ENGR 395	Professional Development	1
• Additional major req	uirements	
Select one of the follo	owing sequences:	4
EGRE 404 & EGRE 405	Senior Design Studio I (Laboratory/ Project Time) and Senior Design Studio II (Laboratory/Project Time)	
EGRE 406 & EGRE 407	Senior Design Studio I - VIP (Laboratory/Project Time) and Senior Design Studio II - VIP (Laboratory/Project Time)	
Technical electives (s	ee list and requirements below)	11
Math/science elective	e (see list below)	3
Ancillary requirement	s	
CHEM 101	General Chemistry I	3
or BIOL 151	Introduction to Biological Sciences I	
ECON 205	The Economics of Product Development and Markets (satisfies BOK for social/behavioral sciences and/or AOI for global perspectives)	3
MATH 200	Calculus with Analytic Geometry I (satisfies general education quantitative foundations)	4
MATH 201	Calculus with Analytic Geometry II	4
MATH 301	Differential Equations	3
MATH 310	Linear Algebra	3
PHIL 201	Introduction to Ethics (satisfies general education BOK for humanities/fine arts and AOI for diversities in the human experience)	3
PHYS 207	University Physics I (satisfies general education BOK for natural sciences and AOI for scientific and logical reasoning)	5
Total Hours		127

The minimum number of credit hours required for this degree is 127.

Capstone project (four credits)

The program culminates in the capstone project. In order to prepare for the appropriate focus area of the capstone project, students, with the help of their academic adviser, should plan a course of study beginning in the fall semester of their junior year.

Technical electives (11 credits)

The technical electives in the junior and senior year must be chosen from the approved lists. The following criteria must be met:

- At least six credit hours must come from the electrical and computer engineering or computer science areas
- Courses not from the approved lists must be approved by the adviser and department chair.
- · Courses must be technical courses at the 300 level or above.
- No more than three credit hours may come from independent study courses.
- If a student wants to apply ENGR 497 toward their technical electives, a minimum of four credit hours must be earned.
- A maximum of eight credits of ENGR 410, ENGR 497 and independent study courses may be used toward technical electives.

Note: Some of the listed courses may have prerequisites that do not count as technical electives.

Course	Title	Hours
Approved electives in	electrical and computer engineering	
EGMN 315	Process and Systems Dynamics	3
EGMN 427	Robotics	3
EGRE 303	Electronic Devices	3
EGRE 307	Integrated Circuits	4
EGRE 309	Introduction to Electromagnetic Fields	3
EGRE 310	Electromagnetic Fields and Waves	3
EGRE 334	Introduction to Microfabrication	4
EGRE 336	Introduction to Communication Systems	3
EGRE 371	Introduction to Power Systems	3
EGRE 435	Microscale and Nanoscale Fabrication	4
EGRE 436	Advanced Microscale and Nanoscale Fabrication	3
EGRE 444	Communication Systems	3
EGRE 454	Automatic Controls	4
EGRE 455	Control Systems Design	3
EGRE 471	Power System Analysis	3
EGRE 510	Introduction to Internet of Things	3
EGRE 512	Intelligent Autonomous Systems	3
EGRE 521	Advanced Semiconductor Devices	3
EGRE 525	Fundamentals of Photonics Engineering	3
EGRE 526/CMSC 506	Computer Networks and Communications	3
EGRE 531	Multicore and Multithreaded Programming	3
EGRE 532	GPU Computing	3
EGRE 535	Digital Signal Processing	3
EGRE 536	Introduction to Cyber-Physical Systems	3

EGRE 539	Introduction to Microwave Engineering	3		
EGRE 540	Microwave System Design	3		
EGRE 541	Medical Devices	3		
EGRE 553	Industrial Automation	3		
EGRE 554	Advanced Industrial Automation	3		
EGRE 555	Dynamics and Multivariable Control I	3		
EGRE 573	Sustainable and Efficient Power Systems	3		
ENGR 410	Review of Internship (completion of internship required)	1		
Approved el	ectives in computer science			
CMSC 303	Introduction to the Theory of Computation	3		
CMSC 355	Fundamentals of Software Engineering	3		
CMSC 401	Algorithm Analysis with Advanced Data Structures	3		
CMSC 404	Compiler Construction	3		
CMSC 411	Computer Graphics	3		
CMSC 420	Software Project Management	3		
Approved electives outside electrical and computer engineering and computer science				
EGMN 309	Material Science for Engineers	3		
EGMN 321	Numerical Methods	3		
EGRB 407	Physical Principles of Medical Imaging	3		
EGRB 408	Advanced Biomedical Signal Processing	3		
EGRB 507	Biomedical Electronics and Instrumentation	3		
ENGR 497	Vertically Integrated Projects	1,2		
MATH 307	Multivariate Calculus	4		
MATH 351	Applied Abstract Algebra	3		
PHYS 307	The Physics of Sound and Music	3		
PHYS 320	Modern Physics	3		
PHYZ 320	Modern Physics Laboratory	1		

Math/science electives (3 credits)

Students must complete 3 credits using one course or a combination of courses from the list below.

Course	Title	Hours
BIOL 151	Introduction to Biological Sciences I	3
BIOZ 151	Introduction to Biological Science Laboratory I	1
BIOL 152	Introduction to Biological Sciences II	3
BIOZ 152	Introduction to Biological Science Laboratory II	1
CHEM 101	General Chemistry I	3
CHEZ 101	General Chemistry Laboratory I	1
CHEM 102	General Chemistry II	3
CHEZ 102	General Chemistry Laboratory II	1
MATH 300	Introduction to Mathematical Reasoning	3
MATH 305	Elementary Number Theory	3
MATH 324	Mathematical Problem Solving	3
MATH 350	Introductory Combinatorics	3

MATH 351	Applied Abstract Algebra	3
MATH 356	Graphs and Algorithms	3
MATH 370	Mathematical Foundations for Artificial Intelligence	3
PHYS 208	University Physics II	5
PHYS 301	Classical Mechanics I	3
PHYS 302	Classical Mechanics II	3
PHYS 320	Modern Physics	3
PHYZ 320	Modern Physics Laboratory	1

What follows is a sample plan that meets the prescribed requirements within a four-year course of study at VCU. Please contact your adviser before beginning course work toward a degree.

Freshman year

Fall semester				
CHEM 101	General Chemistry I	3		
or	or Introduction to Biological Sciences I			
BIOL 151	Internation to Engineering	2		
EGRE 101 MATH 200	Introduction to Engineering	3		
MATH 200	Calculus with Analytic Geometry I (satisfies general education quantitative foundations)	4		
UNIV 111 Play course video for Introduction to Focused Inquiry: Investigation and Communication		3		
General educa	ation course (select AOI for creativity,	3		
innovation an	d aesthetic inquiry)			
	Term Hours:	16		
Spring semes				
EGRE 201	Fundamentals of Electrical and Computer Engineering	3		
EGRE 254	Digital Logic Design	4		
MATH 201	Calculus with Analytic Geometry II	4		
UNIV 112 Play course video for Focused Inquiry II	Focused Inquiry II (satisfies general education UNIV foundations)	3		
	ation course (select AOI for scientific and ning if not already satisfied)	3		
	Term Hours:	17		
Sophomore ye	ear			
Fall semester				
EGRE 206	Electric Circuits	4		
EGRE 245	Engineering Programming	4		
ENGR 395	Professional Development	1		
MATH 301	Differential Equations	3		
PHYS 207	University Physics I	5		
	Term Hours:	17		

Spring semester			
EGRE 246	Advanced Engineering Programming	3	
EGRE 207	Electric Circuits II	4	
EGRE 335	Signals and Systems	4	
EGRE 337	Statistical Information Processing	3	
MATH 310	Linear Algebra	3	
	Term Hours:	17	
Junior year			
Fall semester			
CMSC 302	Introduction to Discrete Structures	3	
EGRE 347	Applied Embedded Programming	3	
EGRE 364	Microcomputer Systems	4	
EGRE 365	Digital Systems	4	
	Term Hours:	14	
Spring semes	ter		
CMSC 312	Introduction to Operating Systems	3	
EGRE 306	Introduction to Microelectronics	4	
EGRE 399	Fundamentals of Design and Analysis	3	
UNIV 200	Advanced Focused Inquiry: Literacies,	3	
	Research and Communication		
PHIL 201	Introduction to Ethics (satisfies general	3	
	education BOK for humanities/fine arts and AOI for diversities in the human experience)		
	Term Hours:	16	
Senior year	Territ riours.	10	
Fall semester			
EGRE 404	Senior Design Studio I (Laboratory/Project	2	
or	Time)	_	
EGRE 406	or Senior Design Studio I - VIP		
	(Laboratory/Project Time)		
EGRE 426	Computer Organization and Design	3	
EGRE 513	Fundamentals of Modern Systems	3	
	Engineering	_	
Technical elec		7	
	Term Hours:	15	
Spring semes			
ECON 205	The Economics of Product Development and Markets	3	
EGRE 405	Senior Design Studio II (Laboratory/Project	2	
or	Time)		
EGRE 407	or Senior Design Studio II - VIP (Laboratory/Project Time)		
EGRE 429	Advanced Digital Systems Design and	3	
	Analysis		
Technical elec	otives	4	
Math/science elective		3	
	Term Hours:	15	
	Total Hours:	127	

The minimum number of credit hours required for this degree is 127.

Accelerated B.S. and M.S.

The accelerated B.S. and M.S. program allows qualified students to earn both the B.S. in Computer Engineering and M.S. in Biomedical Engineering in a minimum of five years by completing approved graduate

courses during the senior year of their undergraduate program. Students in the program may count up to 12 credit hours of graduate courses toward both the B.S. and M.S. degrees. Thus, the two degrees may be earned with a minimum of 148 credits rather than the 160 credits necessary if the two degrees are pursued separately.

Students holding these degrees will have a head start for pursuing careers in industry or continuing in academia. The M.S. degree provides formal research experience and can lead to expanded job opportunities, greater potential for job advancement and higher starting salaries.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to this accelerated program include completion of 97 undergraduate credits, including the prerequisite courses for the capstone project and a minimum of 11 courses from the major requirements (p. 1); an overall minimum GPA of 3.0; and a minimum GPA of 3.2 in major course work. Additionally, a reference letter from a computer engineering faculty member must accompany the application. Students who are interested in the accelerated program should consult with the graduate director before they have completed 97 undergraduate credits.

Once enrolled in the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/academic-regs/grad/satisfactory-academic-progress/)" section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the ECE undergraduate program director and the BME graduate program director.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a formal application to the master's program, which is submitted through Graduate Admissions no later than a semester prior to graduation with the baccalaureate degree, that is, before the end of the fall semester of the senior year. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. The GRE is waived for the admission to the M.S.

Degree requirements

The Bachelor of Science in Computer Engineering degree will be awarded upon completion of a minimum of 130 credits and the satisfactory completion of all undergraduate degree requirements as presented in the Undergraduate Bulletin (p. 1).

A maximum of 12 graduate credits of 500-level graduate courses may be taken prior to completion of the baccalaureate degree. These graduate credits will be utilized to fulfill engineering electives course requirements for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

The graduate courses that may be taken as an undergraduate, once a student is admitted to the program, must be approved by the adviser or graduate program director and include 500-level courses from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC, INNO and OVPR.

Upon approval by the instructor of the course, one 600-level graduate course can be taken as an undergraduate and used to fulfill three undergraduate technical elective credits.

Recommended plan of study for thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the senior year prior to admission to the accelerated program in the senior year.

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proj Time)	ect
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (copathway)	onsider BME course for accelerated	6
Other required B.S. co	ourse work	3
Term Hours:		17
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	ject
EGRE 429	Advanced Digital Systems Design and Analysis	3
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (consider BME course for accelerated pathway)		
Other required B.S. co	ourse work	5
Term Hours:		16
Fifth year		
Fall semester		
EGRB 601	Numerical Methods and Modeling in Biomedical Engineering	4
EGRB 697	Directed Research in Biomedical Engineering	3
Open elective ¹		3
Term Hours:		10

	Spring semester		
	EGRB 602	Biomedical Engineering Systems Physiology	4
	EGRB 690	Biomedical Engineering Research Seminar	1
	EGRB 697	Directed Research in Biomedical Engineering	4
	Term Hours:		9

EGRB, EGMN, ENGR, PHYS, MATH, CMSC, BIOL, PHIS or BIOC at 500-level or above

Recommended plan of study for non-thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the senior year prior to admission to the accelerated program in the senior year.

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proj Time)	ect
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (copathway)	onsider BME course for accelerated	6
Other required B.S. co	ourse work	3
Term Hours:		17
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	ject
EGRE 429	Advanced Digital Systems Design and Analysis	3
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (copathway)	onsider BME course for accelerated	6
Other required B.S. co	ourse work	5
Term Hours:		16
Fifth year		
Fall semester		
EGRB 601	Numerical Methods and Modeling in Biomedical Engineering	4
EGRB technical election	ive (500-level or above)	3
Open elective ¹		6
Term Hours:		13
Spring semester		

EGRB 602	Biomedical Engineering Systems Physiology	4
EGRB 690	Biomedical Engineering Research Seminar	1
Open elective		6
Term Hours:		11
1		

EGRB, EGMN, ENGR, PHYS, MATH, CMSC, BIOL, PHIS or BIOC at 500-level or above

Accelerated B.S. and M.S.

The accelerated B.S. and M.S. program allows qualified students to earn both the B.S. in Computer Engineering and M.S. in Computer Science in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to 12 credit hours of graduate courses toward both the B.S. and M.S. degrees. Thus, the two degrees may be earned with a minimum of 148 credits rather than the 160 credits necessary if the two degrees are pursued separately.

The program is designed to develop skills and educate computer science students to be major contributors in the computing industry. The graduate program in computer science provides state-of-the-art education through the use of didactic courses to those students who wish to further their knowledge and careers within the computing industry. The program emphasizes continuing self-development and broadening of the knowledge of individuals currently engaged in science, technology and engineering-related fields. It also prepares persons who have completed undergraduate majors in these fields for entry into a career in the numerous areas that use computing technology. Both the theoretical and applied aspects of computer science are emphasized in this program.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible (sophomore year is recommended) to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to this accelerated program include an overall GPA of 3.0. For acceptance into this accelerated pathway, students must have completed CMSC 257, CMSC 311, CMSC 355, and CMSC 401 courses with a GPA of at least 3.4. Successful applicants would enter the program in the fall semester of their senior year.

Once enrolled in the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/academic-regs/grad/satisfactory-academic-progress/)" section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the ECE undergraduate program director and the CS graduate program director.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a formal application to the master's program, which is submitted through Graduate Admissions no later than a semester prior to graduation with the baccalaureate degree, that is, before the end of the fall semester of the senior year. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. The GRE is waived for the admission to the M.S.

Degree requirements

The Bachelor of Science in Computer Engineering degree will be awarded upon completion of a minimum of 130 credits and the satisfactory completion of all undergraduate degree requirements as presented in the Undergraduate Bulletin (p. 1).

For students entering the non-thesis option, a maximum of six graduate credits may be taken prior to the completion of the baccalaureate degree. For students entering the thesis option, a maximum of 12 graduate credits may be taken. These graduate credits will count as open or technical elective credits for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

The graduate courses that may be taken as an undergraduate, once a student is admitted to the program, must be approved by the adviser or graduate program director and include 500-level courses from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC, INNO and OVPR.

Recommended course sequence/plan of study for students pursuing a thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the senior year prior to admission to the accelerated program in the senior year.

Course Senior year	Title	Hours
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proje Time)	ct
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (copathway)	onsider CS course for accelerated	6
Other required B.S. co	ourse work	3
Term Hours:		17
Spring semester		

EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Proje Time)	ect
EGRE 429	Advanced Digital Systems Design and Analysis	3
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (copathway)	onsider CS course for accelerated	6
Other required B.S. course work		5
Term Hours:		16
Fifth year		
Fall semester		
CMSC 697	Directed Research	1-15
M.S. foundational are	ea courses (theory and systems) ¹	6
Term Hours:		9
Spring semester		
CMSC 697	Directed Research	6
M.S. foundational are	ea course (applied) ¹	3
Term Hours:		9
1		

See the Graduate Bulletin for the list of theory, systems and applied foundational area courses.

Recommended course sequence/plan of study for students pursuing a non-thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the junior year prior to admission to the accelerated program in the senior year.

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proj Time)	ect
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (copathway)	onsider CS course for accelerated	6
Other required B.S. co	ourse work	3
Term Hours:		17
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	ject
EGRE 429	Advanced Digital Systems Design and Analysis	3
ENGR 403	Senior Design Studio (Seminar)	1

Technical elective (consider CS course for accelerated pathway)	6
Other required B.S. course work	5
Term Hours:	16
Fifth year	
Fall semester	
M.S. foundational area courses (theory and systems) ¹	9
Term Hours:	9
Spring semester	
Graduate didactic course work	9
Term Hours:	9
1	

See the Graduate Bulletin for the list of theory, systems and applied foundational area courses.

Accelerated B.S. and M.S.

The accelerated B.S.-to-M.S. program allows qualified students to earn both the B.S. in Computer Engineering and the M.S. in Engineering, concentration in aerospace engineering; chemical and life science engineering; electrical and computer engineering; engineering management; environmental and sustainable engineering; rehabilitation engineering; systems engineering; or tissue engineering and regenerative medicine in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to 12 hours of graduate courses toward both the B.S. and M.S. degrees.

Students holding these degrees will have a head start for pursuing careers in industry or continuing in academia. The M.S. degree provides formal research experience and can lead to expanded job opportunities, greater potential for job advancement and higher starting salaries.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to any accelerated program include completion of 95 undergraduate credit hours and a minimum overall GPA of 3.0. Students who are interested in the accelerated program should consult with the faculty adviser to the graduate program before they have completed 95 credits. Successful applicants would enter the program in the following semester after graduation with the bachelor's degree..

Once enrolled in the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/academic-regs/grad/satisfactory-academic-progress/)" section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the undergraduate program adviser and the graduate program director.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a formal application to the master's program, which is submitted through Graduate Admissions no later than a semester prior to graduation with the baccalaureate degree, that is before the end of the fall semester of the senior year. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. The GRE and application fee is waived for admission to the program for all students. Additionally, for students pursuing the thesis option of the master's program, a letter of endorsement from a prospective thesis adviser from a faculty member in the relevant department may accompany the application.

Degree requirements

The Bachelor of Science in Computer Engineering degree will be awarded upon completion of all undergraduate degree requirements as stated in the Undergraduate Bulletin.

A maximum of 12 graduate credits may be taken prior to completion of the baccalaureate degree. These graduate credits will count as open or technical elective credits for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

The graduate courses that may be taken as an undergraduate, once a student is admitted to the program, must be approved by the adviser or graduate program director and include 500-level courses from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC, INNO and OVPR.

Curriculum requirements

Thesis option

Concentration component

Concentration in aerospace engineering

Course	Title	Hour
Required graduate-le	evel coursework	
a minimum of 9 credi in EGRE, ENGR, EGRB advisory committee:	relevant graduate course work (includir it hours from 500-level or higher course B, EGMN, CMSC, CLSE) approved by the This component allows the student to r engineering or science with approval of	s

EGMN 604	Mechanical and Nuclear Engineering Materials	3
EGMN 605	Mechanical and Nuclear Engineering Analysis	3
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	3
EGMN 607	Heat and Mass Transfer Theory and Applications	3
Directed research co	mponent	

This component emphasizes research directed toward
completion of degree requirements under the direction of an
adviser and advisory committee.

Title

Dequired graduate level sourcework

EGMN 697	Directed Research in Mechanical and	6
	Nuclear Engineering	
Total Hours		30

Non-thesis option

Course

nequired graduate-level coursework	
Engineering or other relevant graduate course work (including	1
a minimum of 9 credit hours from 500-level or higher courses	
in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the	
adviser. This component allows the student to take courses	

in either engineering or science with approval of the student's

Concentration component

Total Hours		30
EGMN 661	Computational Fluid Dynamics	3
EGMN 607	Heat and Mass Transfer Theory and Applications	3
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	3
EGMN 605	Mechanical and Nuclear Engineering Analysis	3
EGMN 604	Mechanical and Nuclear Engineering Materials	3

Concentration in chemical and life science engineering

Thesis option

Course

Required graduate-level coursework	
Engineering or other relevant graduate course work (including	9
a minimum of 6 credit hours from 500-level or higher courses	
in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE, PESC) approved	
by the advisory committee: This component allows the	
student to take courses in either engineering or science with	
approval of the student's adviser	

Concentration component - CLSE course work

Title

Concentration con	nponent - CLSE course work	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	3
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	3
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	3
CLSE 656	Advanced Chemical Reaction Engineering	3
Choose additional	CLSE course work at the 500 level or higher	3
Directed research		
Select six credit he	ours from the following:	6
CLSE 690	Research Seminar in Chemical and Life Science Engineering	
CLSE 697	Directed Research in Chemical and Life	

Total Hours 30

Non-thesis option

Course

Hours

Hours

Required graduate-level coursework	
Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE, PESC) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.	12
Concentration component - CLSE course work	

Hours

12

12

15

Title

Concentration component - GESE course work		
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	3
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	3
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	3
CLSE 656	Advanced Chemical Reaction Engineering	3
Choose additional CL	SE course work at the 500 level or higher	6
Total Hours		30

Concentration in electrical and computer engineering

Thesis option

Course	Title	Hours
Required gradua	ite-level coursework	

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the advisory committee: This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Concentration component

EGRE course work (EGRE 500-level or higher or courses approved by the advisory committee): This component allows the student to pursue a series of courses that focus on a specific field of engineering and serve as the student's primary engineering discipline.

Directed research component

inis component emp	nasizes research directed toward
completion of degree	requirements under the direction of an
adviser and advisory	committee.
EGRE 697	Directed Research in Electrical and
	Computer Engineering

Total Hours	30

Non-thesis option

Course	Title	Hours
--------	-------	-------

Required graduate-level coursework

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Concentration component

Hours

14

EGRI	E course work (EGRE 500-level or higher or courses	1
appr	oved by the adviser): This component allows the student	
to pu	ursue a series of courses that focus on a specific field of	
engii	neering and serve as the student's primary engineering	
disci	pline.	

Total Hours 30

Concentration in engineering management

Title

Required graduate-level coursework	
Engineering or other relevant graduate course work (including	18
a minimum of 9 credit hours from 500-level or higher courses	
in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the	
adviser. This component allows the student to take courses	
in either engineering or science with approval of the student's	
adviser.	

Concentration component

Course

Total Hours		30
ENGR 696	Engineering Products and Economic Considerations	3
EGMN 507	Law and Engineering	3
CLSE 602	Engineering Contracts and Effective Negotiations	3
CLSE 601	Engineering Project Management	3

Concentration in environmental and sustainable engineering

take courses in either engineering or science with approval of

Title

Thesis option

Course

Required graduate-level coursework	
Engineering or other relevant graduate course work (including	12
a minimum of 9 credit hours from 500-level or higher courses	
in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the	
advisory committee: This component allows the student to	

Concentration component

the student's adviser.

CLSE 545	Water Essentials	3
CLSE 580	Sustainable Chemical Engineering	3
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	3
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	3

Directed research component

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

CLSE 697	Directed Research in Chemical and Life	6
	Science Engineering	

Total Hours 30

Non-thesis option

Course

Hours

Hours

Required graduate-level coursework	
Engineering or other relevant graduate course work (including	18
a minimum of 9 credit hours from 500-level or higher courses	
in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the	
adviser. This component allows the student to take courses	
in either engineering or science with approval of the student's	
adviser.	

Title

Concentration component

Total Hours		30
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	3
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	3
CLSE 580	Sustainable Chemical Engineering	3
CLSE 545	Water Essentials	3

Concentration in rehabilitation engineering

Thesis option

Course	Title	Hours
Required graduate	e-level coursework	
Engineering or oth	ner relevant graduate course work (including	8

Engineering or other relevant graduate course work (including a minimum of 6 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the advisory committee: This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Concentration component

Total Hours		30
EGRB 697	Directed Research in Biomedical Engineering	6
Directed research		
ANAT 610	Systems Neuroscience	4
EGRB 603	Biomedical Signal Processing	3
EGRB 523	Rehabilitation Engineering and Prostheses	3
EGRB 521	Human Factors Engineering	3
EGRB 520	Graduate Assistive Technology	3

Non-thesis option

Course	Title	Hours
Required graduate-le	vel coursework	

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Concentration component

EGRB 520	Graduate Assistive Technology	3
EGRB 521	Human Factors Engineering	3
EGRB 523	Rehabilitation Engineering and Prostheses	3
EGRB 603	Biomedical Signal Processing	3

ANAT 610	Systems Neuroscience	4
Total Hours		30
Concentratio	on in systems engineering	
Thesis option		
Course	Title	Hours
Required gradua	ate-level coursework	
a minimum of 9 in EGRE, ENGR, advisory commi	other relevant graduate course work (including credit hours from 500-level or higher courses EGRB, EGMN, CMSC, CLSE) approved by the ttee: This component allows the student to either engineering or science with approval of viser.	12
Concentration c	omponent	
EGRE 510	Introduction to Internet of Things	3
EGRE 512	Intelligent Autonomous Systems	3
EGRE 513	Fundamentals of Modern Systems Engineering	3
EGRE 615	Systems Modeling	3
Directed research	ch component	
completion of de	t emphasizes research directed toward egree requirements under the direction of an isory committee.	
EGRE 697	Directed Research in Electrical and Computer Engineering	6
Total Hours		30
Non-thesis optio	n	
Course	Title	Hours
Required gradua	ate-level coursework	
5	other relevant graduate course work (including	18

a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Concentration component

Total Hours		30
EGRE 615	Systems Modeling	3
	Engineering	
EGRE 513	Fundamentals of Modern Systems	3
EGRE 512	Intelligent Autonomous Systems	3
EGRE 510	Introduction to Internet of Things	3

Concentration in tissue engineering and regenerative medicine

	-	
Th	esis	option

Course	Title	Hours
Required graduate	e-level coursework	
a minimum of 9 cr in EGRE, ENGR, EC advisory committee	ner relevant graduate course work (inclu redit hours from 500-level or higher cour GRB, EGMN, CMSC, CLSE) approved by t ee: This component allows the student of ther engineering or science with approve ser.	rses he to

Concentration component - TERM course work

EGRB 512	Regenerative Engineering and Medicine	3
EGRB 613	Biomaterials	3
EGRB 614	Tissue Engineering	3
EGRB 616	Cell Engineering	3
Directed research		
EGRB 697	Directed Research in Biomedical Engineering	6
Total Hours		30
Non-thesis option		
Course	Title	Hours
Required graduate-le	vel coursework	
Engineering or other a minimum of 9 credi in EGRE, ENGR, EGRE adviser. This compon	relevant graduate course work (including it hours from 500-level or higher courses B, EGMN, CMSC, CLSE) approved by the sent allows the student to take courses or science with approval of the student's	15
Engineering or other a minimum of 9 credi in EGRE, ENGR, EGRE adviser. This compon in either engineering adviser.	relevant graduate course work (including it hours from 500-level or higher courses 3, EGMN, CMSC, CLSE) approved by the ent allows the student to take courses	15
Engineering or other a minimum of 9 credi in EGRE, ENGR, EGRE adviser. This compon in either engineering adviser.	relevant graduate course work (including it hours from 500-level or higher courses B, EGMN, CMSC, CLSE) approved by the tent allows the student to take courses or science with approval of the student's	15
Engineering or other a minimum of 9 credi in EGRE, ENGR, EGRE adviser. This compon in either engineering adviser. Concentration compo	relevant graduate course work (including it hours from 500-level or higher courses B, EGMN, CMSC, CLSE) approved by the sent allows the student to take courses or science with approval of the student's county to the student or science with approval of the student's county to the student or science with approval of the student's county to the student or science with approval of the student's county to the studen	
Engineering or other a minimum of 9 credi in EGRE, ENGR, EGRE adviser. This compon in either engineering adviser. Concentration components	relevant graduate course work (including it hours from 500-level or higher courses B, EGMN, CMSC, CLSE) approved by the sent allows the student to take courses or science with approval of the student's conent - TERM course work Regenerative Engineering and Medicine	3

Recommended course sequence/plan of study What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the junior/senior year prior to admission to the accelerated program in the senior year.

Choose additional course work at the 500 level or higher

3

Course	Title	Hours
Junior year		
Fall semester		
EGRE 306	Introduction to Microelectronics	4
EGRE 337	Statistical Information Processing	3
EGRE 347	Applied Embedded Programming	3
EGRE 364	Microcomputer Systems	4
EGRE 365	Digital Systems	4
Term Hours:		18
Spring semester		
CMSC 312	Introduction to Operating Systems	3
ECON 205	The Economics of Product Development and Markets	3
PHIL 201	Introduction to Ethics	3
Technical electives		6
Term Hours:		15
Senior year		
Fall semester		

EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
OR		
EGRE 406	Senior Design Studio I - VIP (Laboratory/Project Time)	
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2
ENGR 402	Senior Design Studio (Seminar)	1
EGRE 5xx		6
Other required B.S. c	ourse work	3
Term Hours:		17
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
OR		
EGRE 407	Senior Design Studio II - VIP (Laboratory/Project Time)	
EGRE 429	Advanced Digital Systems Design and Analysis	3
ENGR 403	Senior Design Studio (Seminar)	1
EGRE 5xx ¹		6
Other required B.S. c	ourse work	5
Term Hours:		16
1		

EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC and OVPR at 500-level or above

Concentration in aerospace engineering

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate-le	evel courses ¹	3
Concentration speci	fic courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	
EGMN 607	Heat and Mass Transfer Theory and Applications	
Directed research ²		3
EGMN 697	Directed Research in Mechanical and Nuclear Engineering	
Term Hours:		12
Spring semester		
Required graduate-le	evel courses ¹	3
Concentration speci	fic courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	

EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	
EGMN 607	Heat and Mass Transfer Theory and Applications	
Directed research ²		3
EGMN 697	Directed Research in Mechanical and Nuclear Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate-le	vel courses ¹	3
Concentration specif	ic courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	
EGMN 607	Heat and Mass Transfer Theory and Applications	
EGMN 661	Computational Fluid Dynamics	
Term Hours:		9
Spring semester		
Required graduate-le	vel courses ¹	3
Concentration specif	ic courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	
EGMN 607	Heat and Mass Transfer Theory and Applications	
EGMN 661	Computational Fluid Dynamics	
Term Hours:		9

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in chemical and life science engineering

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate-lev	vel courses ¹	3
Concentration specifi	c courses	6

CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
CLSE 656	Advanced Chemical Reaction Engineering	
Directed research ²		3
CLSE 690	Research Seminar in Chemical and Life Science Engineering	
CLSE 697	Directed Research in Chemical and Life Science Engineering	
Term Hours:		12
Spring semester		
Required graduate-	level courses ¹	3
Concentration spec	cific courses	6
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
CLSE 656	Advanced Chemical Reaction Engineering	
Choose addition higher	al CLSE course work at the 500 level or	
Directed research ²		3
CLSE 690	Research Seminar in Chemical and Life Science Engineering	
CLSE 697	Directed Research in Chemical and Life Science Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate-	level courses ¹	3
Concentration spec	cific courses	6
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
CLSE 656	Advanced Chemical Reaction Engineering	
Term Hours:		9
Spring semester		
Required graduate-	level courses ¹	3
Concentration spec	cific courses	6
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	

CLSE 656	Advanced Chemical Reaction	
	Engineering	
Term Hours:		9

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in electrical and computer engineering

Course Fifth year	Title	Hours
Thesis option		
Fall semester		
Required gradua	te-level courses ¹	3
Concentration sp		6
Directed researc		3
EGRE 697	Directed Research in Electrical and Computer Engineering	
Term Hours:		12
Spring semester		
Required gradua	te-level courses ¹	3
Concentration sp	pecific courses ²	6
Directed researc	h ³	3
EGRE 697	Directed Research in Electrical and Computer Engineering	
Term Hours:		12
Non-thesis optio	n	
Fall semester		
Required gradua	te-level courses ¹	3
Concentration sp	pecific courses ²	6
Term Hours:		9
Spring semester		
Required gradua	te-level courses 1	3
Concentration sp	pecific courses ²	6
Term Hours:		9
1		

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

EGRE course work (EGRE 500-level or higher or courses approved by the advisory committee): This component allows the student to pursue a

series of courses that focus on a specific field of engineering and serve as the student's primary engineering discipline.

3

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in engineering management

Course	Title	Hours
Fifth year		
Fall semester		
Required graduate-l	evel courses ¹	3
Concentration spec	ifc courses	6
CLSE 601	Engineering Project Management	
CLSE 602	Engineering Contracts and Effective Negotiations	
EGMN 507	Law and Engineering	
ENGR 696	Engineering Products and Economic Considerations	
Term Hours:		9
Spring semester		
Required graduate-l	evel courses	3
Concentration spec	ific courses	6
CLSE 601	Engineering Project Management	
CLSE 602	Engineering Contracts and Effective Negotiations	
EGMN 507	Law and Engineering	
ENGR 696	Engineering Products and Economic Considerations	
		Q

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Concentration in environmental and sustainable engineering

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate	level courses ¹	3
Concentration spec	cific	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Directed research 2	2	3

CLSE 697	Directed Research in Chemical and Life Science Engineering	
Term Hours:		12
Spring semester		
Required graduate-l	evel courses ¹	3
Concentration spec	ific courses	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Directed research ²		3
CLSE 697	Directed Research in Chemical and Life Science Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate-l	evel courses ¹	3
Concentration spec	ific courses	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Term Hours:		9
Spring semester		
Required graduate-l	evel courses ¹	3
Concentration spec	ific courses	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Term Hours		9

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in rehabilitation engineering

Course	Title	Hours
Fifth year		
Thesis option		

Fall semester

	. 1	
Required graduate-le		3
Concentration specif	c courses	6
EGRB 520	Graduate Assistive Technology	
EGRB 521	Human Factors Engineering	
EGRB 523	Rehabilitation Engineering and Prostheses	
EGRB 603	Biomedical Signal Processing	
ANAT 610	Systems Neuroscience	
Directed research ²		3
EGRB 697	Directed Research in Biomedical Engineering	
Term Hours:		12
Spring semester		
Required graduate-le	vel courses ¹	3
Concentration specif		6
EGRB 520	Graduate Assistive Technology	
EGRB 521	Human Factors Engineering	
EGRB 523	Rehabilitation Engineering and	
	Prostheses	
EGRB 603	Biomedical Signal Processing	
ANAT 610	Systems Neuroscience	
Directed research ²		3
EGRB 697	Directed Research in Biomedical Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate-le	vel courses ¹	3
Concentration specif	ic courses	6
EGRB 520	Graduate Assistive Technology	
EGRB 521	Human Factors Engineering	
EGRB 523	Rehabilitation Engineering and Prostheses	
EGRB 603	Biomedical Signal Processing	
ANAT 610	Systems Neuroscience	
Term Hours:		9
Spring semester		
	vel courses ¹	3
Required graduate-le		3
	ic courses	
Required graduate-le Concentration specific EGRB 520	ic courses Graduate Assistive Technology	
Required graduate-le Concentration specif	ic courses	
Required graduate-le Concentration specified EGRB 520 EGRB 521	Graduate Assistive Technology Human Factors Engineering Rehabilitation Engineering and Prostheses	
Required graduate-le Concentration specif EGRB 520 EGRB 521 EGRB 523	Graduate Assistive Technology Human Factors Engineering Rehabilitation Engineering and Prostheses Biomedical Signal Processing	
Required graduate-le Concentration specif EGRB 520 EGRB 521 EGRB 523	Graduate Assistive Technology Human Factors Engineering Rehabilitation Engineering and Prostheses	

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in systems engineering

	oyotemo engineering	
Course	Title	Hours
Fifth year		
Thesis option		
Fall semester	,	
Required graduate-le	vel courses ¹	3
Concentration specif	ic courses	6
EGRE 510	Introduction to Internet of Things	
EGRE 512	Intelligent Autonomous Systems	
EGRE 513	Fundamentals of Modern Systems Engineering	
EGRE 615	Systems Modeling	
Directed research		3
EGRE 697	Directed Research in Electrical and Computer Engineering	
Term Hours:		12
Spring semester		
Required graduate-le	vel courses ¹	3
Concentration specif	ic courses	6
EGRE 510	Introduction to Internet of Things	
EGRE 512	Intelligent Autonomous Systems	
EGRE 513	Fundamentals of Modern Systems Engineering	
EGRE 615	Systems Modeling	
Directed research ²		3
EGRE 697	Directed Research in Electrical and Computer Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate-le	vel courses ¹	3
Concentration specif	ic courses	6
EGRE 510	Introduction to Internet of Things	
EGRE 512	Intelligent Autonomous Systems	
EGRE 513	Fundamentals of Modern Systems Engineering	
EGRE 615	Systems Modeling	
Term Hours:		9
Spring semester		
Required graduate-le	vel courses ¹	3
Concentration specif		6
EGRE 510	Introduction to Internet of Things	
EGRE 512	Intelligent Autonomous Systems	
EGRE 513	Fundamentals of Modern Systems Engineering	
EGRE 615	Systems Modeling	
Term Hours		9

1

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

0-----

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in tissue engineering and regenerative medicine

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate	-level courses ¹	3
Concentration spe	cific courses	6
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
EGRB 614	Tissue Engineering	
EGRB 616	Cell Engineering	
Directed research	2	3
EGRB 697	Directed Research in Biomedical Engineering	
Term Hours:		12
Spring semester		
Required graduate	-level courses ¹	3
Concentration spe	cific courses	6
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
EGRB 614	Tissue Engineering	
EGRB 616	Cell Engineering	
Directed research	2	3
EGRB 697	Directed Research in Biomedical Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate	-level courses	3
Concentration spe	cific courses	6
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
EGRB 614	Tissue Engineering	
EGRB 616	Cell Engineering	
Term Hours:		9
Required graduate	-level courses	
Concentration spe	cific courses	
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
EGRB 614	Tissue Engineering	

EGRB 616	Cell Engineering	
Term Hours:		9
1		

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Accelerated B.S. and M.S.

The accelerated B.S. and M.S. program allows qualified students to earn both the B.S. in Computer Engineering and M.S. in Mechanical and Nuclear Engineering in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to 12 credit hours of graduate courses toward both the B.S. and M.S. degrees. Thus, the two degrees may be earned with a minimum of 148 credits rather than the 160 credits necessary if the two degrees are pursued separately.

Students holding these degrees will have a head start for pursuing careers in industry or continuing in academia. The M.S. degree provides formal research experience and can lead to expanded job opportunities, greater potential for job advancement and higher starting salaries.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to this accelerated program includes an overall GPA of 3.0. $\,$

Once admitted into the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/academic-regs/grad/satisfactory-academic-progress/)" section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the undergraduate mechanical engineering adviser and the graduate program director for the master's degree.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a

formal application to the master's program, which is submitted through Graduate Admissions no later than a semester prior to graduation with the baccalaureate degree, that is, before the end of the fall semester of the senior year. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. The GRE is waived for the admission to the M.S.

Degree requirements

The Bachelor of Science in Computer Engineering degree will be awarded upon completion of a minimum of 130 credits and the satisfactory completion of all undergraduate degree requirements as presented in the Undergraduate Bulletin (p. 1).

A maximum of 12 graduate credits of 500-level graduate courses may be taken prior to completion of the baccalaureate degree. These graduate credits will be utilized to fulfill engineering electives course requirements for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

Once a student is admitted to the program, with the approval of their adviser, they may choose any 500-level course from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC and OVPR.

Recommended course sequence/plan of study

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the junior year prior to admission to the accelerated program in the senior year.

For students pursuing the non-thesis option

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proje Time)	ect
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (copathway)	onsider MNE course for accelerated	6
Other required B.S. co	ourse work	3
Term Hours:		17
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Proj Time)	ect
EGRE 429	Advanced Digital Systems Design and Analysis	3
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (consider MNE course for accelerated pathway)		
Other required B.S. course work		

Term Hours:		16
Fifth year		
Fall semester		
EGMN 605	Mechanical and Nuclear Engineering Analysis	3
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	3
EGMN 610	Topics in Nuclear Engineering	3
Term Hours:		9
Spring semester		
Technical elective (Select 600-level courses from: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC and OVPR)		6
Technical elective (Select 500- or 600-level course from: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC and OVPR)		3
Term Hours:		9

For students pursuing the thesis option

Course	Title	Hours
Senior year Fall semester		
EGRE 404	Caniar Dagina Ctudia I (Laboratam)	2
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proj Time)	ect
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider MNE course for accelerated	6
Other required B.S. c	ourse work	3
Term Hours:		17
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	ject
EGRE 429	Advanced Digital Systems Design and Analysis	3
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider MNE course for accelerated	6
Other required B.S. c	ourse work	5
Term Hours:		16
Fifth year		
Fall semester		
Fall semester EGMN 605	Mechanical and Nuclear Engineering Analysis	3
		3
EGMN 605	Analysis Mechanical and Nuclear Engineering	
EGMN 605 EGMN 606	Analysis Mechanical and Nuclear Engineering Continuum Mechanics	3

EGMN 697	Directed Research in Mechanical and Nuclear Engineering	6
EGRM, ENGR, EGR	(Select 600-level courses from: EGMN, N, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, L, GRAD, LFSC and OVPR)	3
Term Hours:		9