COMPUTER ENGINEERING, BACHELOR OF SCIENCE (B.S.)

Computer engineers are responsible for developing the powerful computer systems that have become a part of our everyday life. Applications for computer engineering span the spectrum from high-performance, general-purpose computing systems such as desktop workstations used in all facets of business, to small microprocessors embedded in larger systems and functioning as controllers. These latter applications, known as embedded systems, can be found in control systems for trains, aircraft and automobiles; medical equipment; telecommunications systems; and consumer electronics and appliances. This explosive growth of computer systems in use in almost every new appliance or vehicle has resulted in a strong demand for engineers trained in the development of these systems, and all indications are that this trend will continue for the foreseeable future.

Learning outcomes

Upon completing this program, students will know and know how to do the following:

1. Apply knowledge of mathematics, science and engineering
2. Design and conduct experiments, as well as to analyze and interpret data
3. Design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability
4. Function on multidisciplinary teams
5. Identify, formulate and solve engineering problems
6. Gain an understanding of professional and ethical responsibility
7. Communicate effectively
8. Complete the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context
9. Recognize the need for, and an ability to engage in, lifelong learning
10. Gain knowledge of contemporary issues
11. Use the techniques, skills and modern engineering tools necessary for engineering practice

Special requirements

Program D grade policy: Students must receive a minimum grade of C in all engineering, computer science, physics, mathematics and all technical electives to graduate.

Degree requirements for Computer Engineering, Bachelor of Science (B.S.)

General Education requirements

<table>
<thead>
<tr>
<th>University Core Education Curriculum</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIV 111 Play course video for Focused Inquiry I</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 112 Play course video for Focused Inquiry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Collateral requirements

<table>
<thead>
<tr>
<th>Collateral requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 200 Calculus with Analytic Geometry (satisfies approved quantitative literacy)</td>
</tr>
<tr>
<td>MATH 201 Calculus with Analytic Geometry</td>
</tr>
<tr>
<td>MATH 211 Mathematical Structures</td>
</tr>
<tr>
<td>MATH 301 Differential Equations</td>
</tr>
<tr>
<td>PHIL 201 Critical Thinking About Moral Problems (satisfies approved humanities/fine arts)</td>
</tr>
<tr>
<td>PHYS 207 University Physics I</td>
</tr>
<tr>
<td>PHYS 208 University Physics II</td>
</tr>
</tbody>
</table>

Total Hours 32-34

Major requirements

<table>
<thead>
<tr>
<th>Major requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMSC 312 Introduction to Operating Systems</td>
</tr>
<tr>
<td>CMSC 355 Software Engineering: Specification and Design</td>
</tr>
<tr>
<td>EGRE 101 Introduction to Engineering</td>
</tr>
<tr>
<td>EGRE 206 Electric Circuits</td>
</tr>
<tr>
<td>EGRE 207 Electric Circuits II</td>
</tr>
<tr>
<td>EGRE 245 Engineering Programming</td>
</tr>
<tr>
<td>EGRE 246 Advanced Engineering Programming</td>
</tr>
<tr>
<td>EGRE 254 Digital Logic Design</td>
</tr>
<tr>
<td>EGRE 306 Introduction to Microelectronics</td>
</tr>
<tr>
<td>EGRE 335 Signals and Systems I</td>
</tr>
<tr>
<td>EGRE 337 Signals and Systems II</td>
</tr>
<tr>
<td>EGRE 364 Microcomputer Systems</td>
</tr>
<tr>
<td>EGRE 365 Digital Systems</td>
</tr>
<tr>
<td>EGRE 426 Computer Organization and Design</td>
</tr>
<tr>
<td>EGRE 428 Introduction to Integrated Systems Design</td>
</tr>
<tr>
<td>EGRE 429 Advanced Digital Systems Design</td>
</tr>
<tr>
<td>ENGR 402 Senior Design Studio (Seminar) & ENGR 403 Senior Design Studio (Seminar)</td>
</tr>
</tbody>
</table>

Technical electives (see list and requirements below) 21

Total Hours 78
Total minimum requirement 130 credits

Technical electives (21 credits)
The 21 credit hours in the junior and senior year must be chosen from the approved lists. The following criteria must be met:

- At least twelve credit hours must come from the electrical and computer engineering or computer science areas
- At least three credit hours must come from outside the electrical and computer engineering and computer science areas
- Courses not from the approved lists must be approved by the adviser and department chair.
- Courses must be technical courses at the 300 level or above.
- No more than three credit hours may come from independent study courses.
- If a student wants to apply ENGR 497 toward their technical electives, a minimum of four credit hours must be earned.
- A maximum of nine credits of ENGR 410, ENGR 497 and independent study courses may be used toward technical electives.

Note: Some of the listed courses may have prerequisites that do not count as technical electives.

Approved electives in computer science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMSC 302</td>
<td>Introduction to Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CMSC 303</td>
<td>Introduction to the Theory of Computation</td>
<td>3</td>
</tr>
<tr>
<td>CMSC 401</td>
<td>Algorithm Analysis with Advanced Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>CMSC 403</td>
<td>Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>CMSC 404</td>
<td>Compiler Construction</td>
<td>3</td>
</tr>
<tr>
<td>CMSC 409</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CMSC 411</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CMSC 420</td>
<td>Software Engineering: Project Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Approved electives outside electrical and computer engineering and computer science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMN 309</td>
<td>Material Science for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>EGMN 321</td>
<td>Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>EGRB 407</td>
<td>Physical Principles of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>EGRB 408</td>
<td>Advanced Biomedical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>EGRB 507</td>
<td>Biomedical Electronics and Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 307</td>
<td>Multivariate Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 310</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 351</td>
<td>Applied Abstract Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 307</td>
<td>The Physics of Sound and Music</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 320</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYZ 320</td>
<td>Modern Physics Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

What follows is a sample plan that meets the prescribed requirements within a four-year course of study at VCU. Please contact your adviser before beginning course work toward a degree.

Freshman year

Fall semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I & CHEZ 101</td>
<td>4</td>
</tr>
<tr>
<td>EGRE 401</td>
<td>Introduction to Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus with Analytic Geometry (satisfies approved quantitative literacy)</td>
<td>4</td>
</tr>
<tr>
<td>UNIV 111</td>
<td>Focused Inquiry I</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Hours: 15

Spring semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGRE 245</td>
<td>Engineering Programming</td>
<td>4</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus with Analytic Geometry</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>University Physics I</td>
<td>5</td>
</tr>
<tr>
<td>UNIV 112</td>
<td>Focused Inquiry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Hours: 16

Sophomore year
Fall semester
EGRE 206 Electric Circuits 4
EGRE 246 Advanced Engineering Programming 3
MATH 301 Differential Equations 3
PHYS 208 University Physics II 5
UNIV 200 Inquiry and the Craft of Argument 3

Term Hours: 18

Spring semester
EGRE 207 Electric Circuits II 4
EGRE 254 Digital Logic Design 4
EGRE 335 Signals and Systems II 4
MATH 211 Mathematical Structures 3

Term Hours: 15

Junior year
Fall semester
CMSC 355 Software Engineering: Specification and Design 3
EGRE 306 Introduction to Microelectronics 4
EGRE 337 Signals and Systems II 3
EGRE 364 Microcomputer Systems 4
EGRE 365 Digital Systems 4

Term Hours: 18

Spring semester
CMSC 312 Introduction to Operating Systems 3
ECON 205 The Economics of Product Development and Markets 3
Approved social/behavioral science 3
Technical elective 6

Term Hours: 15

Senior year
Fall semester
EGRE 426 Computer Organization and Design 3
EGRE 428 Introduction to Integrated Systems Design 1
ENGR 402 Senior Design Studio (Seminar) 1
SPCH 321 Speech for Business and the Professions 3
Approved natural/physical science 3
Technical electives 8

Term Hours: 19

Spring semester
EGRE 429 Advanced Digital Systems Design 3
ENGR 403 Senior Design Studio (Seminar) 1
PHIL 201 Critical Thinking About Moral Problems (satisfies approved humanities/fine arts) 3
Technical electives 7

Term Hours: 14

Total Hours: 130

- Electrical and computer engineering (p. 3)
- Engineering (p. 6)
EGRE 254. Digital Logic Design. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: EGRE 101 and EGRE 245 or equivalents, both with a minimum grade of C. An introduction to digital logic design with an emphasis on practical design techniques and circuit implementations. Topics include number representation in digital computers, Boolean algebra, theory of logic functions, mapping techniques and function minimization, design of combinational, clocked sequential and interactive digital circuits such as comparators, counters, pattern detectors, adders and subtractors. An introduction on designing digital circuits using schematic capture, logic simulation and hardware description languages is included. Students will use the above basic skills in the laboratory to design and fabricate digital logic circuits using discrete logic and field programmable gate arrays.

EGRE 303. Electronic Devices. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRE 306 and MATH 301, both with a minimum grade of C. An introduction to solid state electronic devices covering the fundamentals of atomic structure, band theory, charge transport in solids and terminal electrical characteristics of semiconductor devices including p-n junction and Schottky diodes, bipolar junction and insulated gate field-effect transistors.

EGRE 306. Introduction to Microelectronics. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: EGRE 207 and MATH 301, both with a minimum grade of C. This course covers the analysis, modeling and design of electrical circuits which contain electronic devices. Students will learn to design analog circuits to specifications through laboratory problems, a design project and circuit simulation.

EGRE 307. Integrated Circuits. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: EGRE 306 and EGRE 337, both with a minimum grade of C. Corequisite: EGRE 336. Analysis, modeling, design and measurement of advanced MOSFET and bipolar analog integrated circuits. Topics include active filters, differential amplifiers, frequency response and feedback topologies. Operational amplifier circuit topologies are used as a means of studying input, gain, level shift and output stages. Circuit design techniques are explored for mixed signal analog-digital circuits. This course provides the opportunity for a group design project of an integrated circuit chip, using advanced software tools for simulation and physical layout.

EGRE 309. Introduction to Electromagnetic Fields. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits.
Prerequisites: EGRE 207, MATH 301, MATH 307 and PHYS 208, all with a minimum grade of C. This course provides an introduction to the concept of electromagnetic fields. Topics include electrostatics, magnetostatics, scalar and vector potentials, and work and energy in fields, as well as the analysis and understanding of the phenomena associated with static electric and magnetic fields. Laboratory exercises will serve to reinforce students’ understanding of fields and train them in methods to measure, quantify and analyze electromagnetic phenomena.

EGRE 310. Electromagnetic Fields and Waves. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: EGRE 309 with a minimum grade of C. This course covers the fundamentals of time-varying electromagnetic fields. Topics include electromagnetic induction, Maxwell’s equations, wave propagation, guided waves, transmission lines and antennas. Laboratory exercises will serve to reinforce students’ understanding of time-varying fields and waves and train them in methods to measure, quantify and analyze dynamic electromagnetic phenomena.

EGRE 334. Introduction to Microfabrication. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: CHEM 101, MATH 201 and PHYS 208, all with a minimum grade of C. This course gives an overview of microscale device fabrication and testing for a general audience. A wide variety of new terms, equipment and processes are presented. Fundamentals of photolithography, mask making, diffusion, oxidation, ion implantation, film deposition and etching are covered. Laboratory work consists of safety training, hands-on fabrication experience and testing. A laboratory chip test is fabricated from start to finish and then tested. The test chip includes basic integrated circuit elements as well as solar cells.

EGRE 335. Signals and Systems I. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: EGRE 206 and 245 and MATH 301, all with a minimum grade of C. Presents the concept of linear continuous-time and discrete-time signals and systems, their classification, and analysis and design using mathematical models. Topics to be covered: the concepts of linear systems and classification of these systems, continuous-time linear systems and differential and difference equations, convolution, frequency domain analysis of systems, Fourier series and Fourier transforms and their application, and continuous-time to discrete-time conversion.

EGRE 336. Introduction to Communication Systems. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGRE 337 with a minimum grade of C. Introduction to the theory and application of analog and digital communications including signal analysis, baseband transmission, amplitude and angle modulation, digital modulation, baseband digital communication, and design considerations.

EGRE 337. Signals and Systems II. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGRE 335 with a minimum grade of C. This class presents the Laplace and Z transforms and their application to electrical circuits and discrete-time systems, an introduction to probability, random variables and random processes with applications in electrical engineering.

EGRE 364. Microcomputer Systems. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: EGRE 246 and 254, both with a minimum grade of C. Basic computer organization, microprocessor instruction sets and architectures, assembly language programming and the function of computer memory and I/O subsystems will be discussed. The laboratory is designed to reinforce the lecture by providing the opportunity to study the workings of a simple computer system in detail using simulation models and real hardware. Students will write and execute assembly language programs and make use of commercial design automation tools.

EGRE 365. Digital Systems. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits.
Prerequisites: EGRE 246 and 254, both with a minimum grade of C. Corequisite: EGRE 364. Focuses on the design of modern digital systems. Topics covered include: introduction to modeling, simulation, synthesis and FPGA design techniques using VHDL; microprocessor peripherals and interfacing; embedded system hardware and software design issues.
EGRE 402. Senior Design Studio I (Laboratory/Project Time). 2 Hours.
Semester course; 6 laboratory hours. 2 credits. Prerequisites: EGRE 207, 246, 254 and 335; and completion of three from: EGRE 306, 309, 337 and 364. All prerequisite courses must be completed with a minimum grade of C. Corequisite: any electrical engineering technical elective. Enrollment restricted to students with senior standing in electrical engineering and participation in a senior design (capstone) project. A minimum of six laboratory hours per week dedicated to the execution phase of the senior design (capstone) project, which should meet appropriate engineering standards and multiple realistic constraints. Tasks include team meetings, brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects.

EGRE 403. Senior Design Studio II (Laboratory/Project Time). 2 Hours.
Semester course; 6 laboratory hours. 2 credits. Prerequisite: EGRE 402 with a minimum grade of C. A minimum of six laboratory hours per week dedicated to the execution phase of the senior design (capstone) project, which should meet appropriate engineering standards and multiple realistic constraints. Tasks include team meetings, brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects.

EGRE 426. Computer Organization and Design. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: EGRE 364 or CMSC 311 with a minimum grade of C. This course presents the foundation for computer design at the register transfer level. Starting from an instruction set architecture, students will learn the process used to design a data path and control unit to implement that instruction set. In addition, the topics of computer components and structures, data paths and control unit organizations, I/O and memory systems, interrupt systems, pipelining, and multiprocessing will be discussed. In addition to reinforcing the lecture material, the laboratory exercises will teach students the art of modeling and designing computer system components using a hardware description language.

EGRE 427. Advanced Digital Design. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: EGRE 365 and 426, both with a minimum grade of C. This course provides students with practical foundations for the design, implementation and testing of digital systems. It expands on the digital and computer system theory presented in prerequisite courses. Topics covered include: microcontrollers and embedded processors, application specific IC (ASIC) architectures and implementing digital systems with ACISs, logic families and high-speed interfacing, logic synthesis, design methodologies, hardware/software codesign, production testing and design for testability, and construction, testing and debugging of digital system prototypes. In the laboratory, the students will design, construct, test and debug a multidisciplinary, computer-based hardware/software system to meet appropriate engineering standards and multiple realistic constraints.

EGRE 428. Introduction to Integrated Systems Design. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisite: EGRE 364 and EGRE 365, both with a minimum grade of C. This course provides an introduction to senior capstone design for computer engineers. Topics include hardware/software project design methodologies, integrated hardware and software design tools, life cycle costs analysis and requirements and specification analysis. Students are also introduced to concepts and design tools for FPGA and system-on-a-chip devices. Lectures are intended to support tasks required to execute a successful senior capstone experience. These tasks include, but are not limited to, project configuration management, customer interaction skills, requirements elicitation, simulation, procurement, design, testing and validation.

EGRE 429. Advanced Digital Systems Design. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisites: EGRE 365 and EGRE 428, both with a minimum grade of C. This course provides students with theoretical and practical foundations for advanced embedded systems design and cyber physical system applications. It extends the concepts introduced in EGRE 428. Special emphasis is placed on the design of advanced embedded computing platforms for cyber physical system applications. Topics covered include: introduction to cyber physical systems; cyber physical systems theory; FPGA and system-on-a-chip design environments; designing, developing and implementing cyber physical systems using FPGA and system-on-a-chip technology; real-time computing and operating systems; real-time sensor networks; engineering design standards; and verification and validation of complex designs. In the laboratory the students will use state-of-the-art system development tools to design, construct, test and verify a system-on-a-chip-based system to meet appropriate engineering standards and multiple realistic system constraints.

EGRE 435. Microscale and Nanoscale Fabrication. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: EGRE 306 and EGRE 334, both with a minimum grade of C. This course presents the design tools and techniques for designing a fabrication process as well as a device design and layout for advanced microscale and nanoscale devices. A number of different types of device technologies are covered, incorporating electronic, micromechanical and microfluidic devices and sensors. In the laboratory section of the course, students work in design teams to develop a complete fabrication process and design layout for a microscale device to meet appropriate engineering standards and multiple realistic constraints. Computer simulations and computer-aided design tools are used in the final design. The laboratory section of this course accomplishes the design phase of the senior design capstone project, which is presented at the end of semester and fabricated in the subsequent course, EGRE 436.

EGRE 436. Advanced Microscale and Nanoscale Fabrication. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: EGRE 435 with a minimum grade of C. This course presents a detailed analysis of the physics and modeling of the fundamental processes used in semiconductor processing. Emphasis is placed on the non-ideal effects that cause realistic processes to deviate from first order models, including second order effects such as interactions on the atomic level and the influence of crystal defects. Processes covered in detail include oxidation, diffusion, ion implementation, thin film deposition and plasma etching techniques. Student work in design teams in the laboratory section, which focuses on the fabrication and testing of the microscale device developed in EGRE 435. The laboratory section of the course accomplishes the fabrication and testing phase of the senior design capstone project.
EGRE 444. Communication Systems. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGRE 336 with a minimum grade of C. Design and analysis of analog and digital communication systems, pulse modulation, information and digital transmission, digital modulation, information theory and coding will be treated. Emphasis is placed on the student gaining an appreciation for and an understanding of the role of optimization and trade-offs by considering bandwidth requirements, signal-to-noise ratio limitations, complexity and cost of analog and digital communication systems.

EGRE 454. Automatic Controls. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisite: EGRE 337, EGMN 305 or EGMN 315 with a minimum grade of C. For computer engineering or electrical engineering majors, the prerequisite is EGRE 337 with a minimum grade of C. This course covers the design and analysis of linear feedback systems. Emphasis is placed upon the student gaining mathematical modeling experience and performing sensitivity and stability analysis. The use of compensators to meet systems design specifications will be treated. Topics include: an overview and brief history of feedback control, dynamic models, dynamic response, basic properties of feedback, root-locus, frequency response and state space design methods. The laboratory will consist of modeling and control demonstrations and experiments of single-input/single-output and multivariable systems, analysis and simulation using MATLAB/ Simulink and other control system analysis/design/implementation software.

EGRE 455. Control Systems Design. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGRE 454 with a minimum grade of C. This course covers the use of state space methods to model analog and digital linear and nonlinear systems. Emphasis is placed on the student gaining mathematical modeling experience, performing sensitivity and stability analysis and designing compensators to meet systems specifications. Topics treated will include a review of root locus and frequency design methods, linear algebraic equations, state variable equations, state space design and digital control systems (principles and case studies). The students will use complex dynamic systems for analysis and design.

EGRE 471. Power System Analysis. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGRE 206 with a minimum grade of C. Provides a comprehensive overview of electrical power system operation and design. Students develop models and tools for investigating system behavior and have opportunities for using those tools in design processes. At the completion of the course students will be able to develop appropriate models for an interconnected power system, perform power flow analysis, economic dispatch, power system protection and controls. Students will also be able to write a basic power flow computer program.

EGRE 491. Special Topics. 1-5 Hours.
Semester course; variable hours. 1-5 credits. May be repeated with different topics for a total of 21 credits. Advanced study of a selected topic in electrical or computer engineering. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

EGRE 492. Independent Study in Electrical and Computer Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. May be repeated with different content for a total of 9 credits. Prerequisite: permission of the instructor. Students must submit a written proposal to be approved by the supervising instructor prior to registration. Investigation of specialized electrical or computer engineering problems through literature search, mathematical analysis, computer simulation and/or laboratory experimentation. Written and oral progress reports as well as a final report and presentation are required.

Engineering

ENGR 100. Engineering Student Success. 0 Hours.
Semester course; seminar hours. 0 credits. Enrollment is restricted to new first-year students in the School of Engineering; required for students admitted conditionally. Students will meet for a 90-minute class once per week for five weeks. The course is dedicated to helping students understand the expectations and responsibilities of being a college student. Presentations will center on planning the semester, academic professionalism, study skills and test-taking strategies, financial literacy, health and wellness, time management, and the Honor Code. Seminars will be supplemented throughout the semester with online assignments to reinforce the discussions. Graded as pass/fail.

ENGR 101. Introduction to Engineering. 4 Hours.
Semester course; 3 lecture and 3 laboratory hours. 4 credits. Prerequisites: admission to the School of Engineering or permission of instructor. Introduces basic circuits including resistors, diodes, transistors, digital gates and motors. Simple electromechanical systems are considered including motors, gears and wheels. The laboratory introduces fundamental circuit testing and measurement, and proper laboratory notebook writing; students are required to analyze, build and test a digitally controlled robot.

ENGR 111. Innovation Shop Training I. 0.5 Hours.
Semester course; 1 laboratory hour. 0.5 credits. Enrollment restricted to students in the School of Engineering. The course provides training on innovation shop safety, includes a tour of the shop, measuring and layout tools and techniques, use of general manual and powered hand tools. Students will be instructed on the use of a bench-top drill press, deburring and finishing tools, 3D printing, laser engraving and thermoforming equipment. Students need to achieve a minimum score of 76% in the class to attain Level I (Blue) certification. Only certified students have permission to use tools and equipment covered in this training. Graded as Pass/Fail.

ENGR 121. Engineering Fundamentals. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: permission of instructor. Open only to non-engineering majors in Certificate in Product Innovation program. Introduces engineering fundamentals to students from non-engineering disciplines. Particular focus is the engineering problem-solving process as applied to open-ended problems. Students will be introduced to the different types of engineering, examine engineering issues and apply the engineering problem-solving process.

ENGR 211. Innovation Shop Training II. 1 Hour.
Semester course; 2 laboratory hours. 1 credit. Prerequisite: ENGR 111. Enrollment restricted to students in the School of Engineering. The course provides training on machine/innovation shop safety, blueprint reading, measuring and layout tools and techniques, and use of general and powered hand tools. Students will be instructed on sawing, sanding, drilling and tapping operations, 3D printing and laser engraving/cutting equipment. Hands-on graded assignment is the part of the course.
ENGR 291. Special Topics in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. Prerequisite: to be determined by the instructor. Specialized topics in engineering designed to provide a topic not covered by an existing course or program. General engineering or multidisciplinary. May be repeated with different content. Graded as pass/fail or normal letter grading at the option of the instructor. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

ENGR 296. Part-time Internship Experience. 0 Hours.
Semester course; 0 credit. Students may attempt this course a total of six times. Enrollment restricted to School of Engineering majors. The student works part-time in an approved internship and must work a minimum of 90 hours, but less than 300 hours during the semester. The student works to meet learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor and student both complete evaluations of the learning experience. Graded pass/fail.

ENGR 303. Junior Seminar. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: permission of instructor. This course provides students an opportunity to explore business and leadership topics. Topics include the fundamentals of product design and new product development, manufacturing and quality systems, finances and financial reports, ethics in the workplace, intellectual property, teamwork, leadership and communications. Students will be assigned selected readings, written compositions and oral presentations. This course prepares the student to participate in the Engineering Laboratory/Manufacturing Internship.

ENGR 311. Innovation Shop Training III. 1 Hour.
Semester course; 2 laboratory hours. 1 credit. Prerequisite: ENGR 211. Enrollment is restricted to students with Level II (Red) certification. The Level III (Green) course provides basic training on set-up and operation of manual milling machines and the lathe. The course covers cutting tool, speed and feed calculation. Students must develop a technological process and machine metal parts per assigned drawings on vertical mill and lathe. They will also use other techniques and equipment that were covered in previous levels. Students need to achieve a minimum score of 76 % in the class to attain Level III (Green) certification. Only certified students have permission to use tools and equipment covered in this training.

ENGR 395. Professional Development. 1 Hour.
Semester course; 1 lecture and 1 workshop hour. 1 credit. Enrollment is restricted to majors in the School of Engineering. Professional development course to help prepare students to find a job and succeed in a professional environment, and specifically to work as an intern or in a cooperative education position. Topics covered include career paths; job searches; resume and cover letter writing; preparing for the interview; personal assessment of interests, values and strengths; networking; professional and ethical behavior on the job; overview of legal issues related to hiring, such as nondisclosure agreements and noncompete clauses; overview of personal finance management at the first job; workplace safety; and expectations and requirements for internships and cooperative education positions.

ENGR 396. Internship Experience. 0 Hours.
Semester course; 0 credit. Students may attempt this course a total of three times. Enrollment restricted to School of Engineering majors. The student works in an approved internship and must work a minimum of 300 hours during the semester. The student works to meet learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor and student both complete evaluations of the learning experience. Graded pass/fail.

ENGR 398. Cooperative Education Experience. 0 Hours.
Semester course; 0 credits. Students may attempt this course a total of four times. Prerequisite: ENGR 395. Restricted to School of Engineering majors in good academic standing. The student works full-time in an approved cooperative education position. The student works to meet specific learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor/mentor and student both complete midterm and final evaluations of the learning experience. Graded pass/fail.

ENGR 399. Cooperative Education Experience II. 3 Hours.
Semester course; 3 credits. Prerequisite: ENGR 398. Restricted to School of Engineering majors in good academic standing. A student that has completed at least one work term in a full-time approved cooperative education position completes an additional full-time work term. The student works to meet specific learning objectives while gaining practical experience relevant to their major. The student completes assignments to document, assess and reflect on their learning experience. The supervisor/mentor and student both complete midterm and final evaluations of the learning experience.

ENGR 402. Senior Design Studio (Seminar). 1 Hour.
Continuous courses; 1 lecture hour. 1-1 credit. Prerequisites: senior standing and participation in a senior design (capstone) project; completion of ENGR 402 to enroll in ENGR 403. This weekly seminar presents and discusses topics relevant to senior-level engineering students in support of the capstone project and upcoming graduation. A single course coordinator manages and administers the course and schedules the various faculty lectures and guest speakers. Topics include, but are not limited to, the following: proposal writing, project planning and management, scheduling resources and budgeting for technical projects, patents and intellectual property, quality systems (six sigma, ISO standards, statistical process control), entrepreneurship, creativity and innovation and professional registration.

ENGR 403. Senior Design Studio (Seminar). 1 Hour.
Continuous courses; 1 lecture hour. 1-1 credit. Prerequisites: senior standing and participation in a senior design (capstone) project; completion of ENGR 402 to enroll in ENGR 403. This weekly seminar presents and discusses topics relevant to senior-level engineering students in support of the capstone project and upcoming graduation. A single course coordinator manages and administers the course and schedules the various faculty lectures and guest speakers. Topics include, but are not limited to, the following: proposal writing, project planning and management, scheduling resources and budgeting for technical projects, patents and intellectual property, quality systems (six sigma, ISO standards, statistical process control), entrepreneurship, creativity and innovation and professional registration.

ENGR 410. Review of Internship. 1 Hour.
Semester course; 1 credit. Prerequisites: chemical, electrical and computer, or mechanical engineering major and experience to satisfy the engineering internship requirements. Students complete oral presentations and written reports summarizing the internship experience.
ENGR 411. Fundamentals of Engineering Exam Preparation. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Prerequisite: senior or graduate standing, or permission of instructor. This course prepares students for taking the fundamentals of Engineering Exam. Passing the FE Exam is the first step to getting a Professional Engineering license. This course is not intended to teach the various subject matters, but to review the subject areas and help students prepare as well as possible for the examination.

ENGR 490. Engineering Seminar. 1-3 Hours.
Semester course; variable hours. 1-3 credits. May be repeated with different content. Prerequisite: permission of the instructor. A series of specialized topics in engineering that are of general interest but not covered by an existing course or program. Lectures will be presented in seminar format by speakers from business, industry, government and academia. Subjects will be multidisciplinary in nature. Graded as pass/fail or normal letter grading at the option of the instructor.

ENGR 491. Special Topics in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. Prerequisite: determined by the instructor. Specialized topics in engineering designed to provide a topic not covered by an existing course or program. General engineering or multidisciplinary. May be repeated with different content. Graded as pass/fail or normal letter grading at the option of the instructor. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

ENGR 492. Independent Study in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. May be repeated with different content. Prerequisite: permission of the instructor. Students must submit a written proposal to be approved by the supervising instructor prior to registration. Investigation of specialized engineering problems that are multidisciplinary or of general interest through literature search, mathematical analysis, computer simulation and/or laboratory experimentation. Written and oral progress reports as well as a final report and presentation are required. Graded as pass/fail or normal letter grading at the option of the instructor.

ENGR 496. Internship Review. 0 Hours.
Semester course; 0 credits. Prerequisite: ENGR 296 or ENGR 396. Restricted to School of Engineering majors. This course is to be taken following the completion of a minimum of 300 hours of approved internship experience relevant to the student’s major and documents that a student has fulfilled all internship requirements, including a final evaluation by the employer, a final self-evaluation, a final report describing the experience and a final oral presentation about the experience. Graded pass/fail.

ENGR 497. Vertically Integrated Projects. 1,2 Hour.
Semester course; 3 or 6 laboratory hours. 1 or 2 credits. May be repeated for a maximum total of 8 credits. Prerequisites: permission of the project faculty adviser. This course provides undergraduate students the opportunity to participate in multiyear, multidisciplinary projects under the guidance of faculty and graduate students in their areas of expertise. As they address research and development issues, students learn and practice many different professional skills, make substantial technical contributions to the project, and experience many different roles on a large, multidisciplinary design/discovery team. Students must earn a minimum of 4 credits in ENGR 497 with a minimum grade of C in order for these credits to be eligible to count toward a technical or departmental elective. More restrictive requirements may be imposed by individual departments.

ENGR 498. Review of Cooperative Education Experience. 0 Hours.
Semester course; 0 credits. Prerequisite: ENGR 398. Restricted to School of Engineering majors. This course is completed following the final work term of a cooperative education experience and is required to obtain transcript notation to document that a student has fulfilled all the requirements of the school’s cooperative education program. The requirements include a final evaluation by the employer, a final self-evaluation, a final report describing the experience and a final oral presentation about the experience.