ELECTRICAL ENGINEERING, BACHELOR OF SCIENCE (B.S.)

The profession of electrical engineering touches all aspects of our lives in that electrical engineers design and fabricate devices and systems critical in applications such as computing, communications, health care, manufacturing and automation, power generation and utilization, transportation, and entertainment. An element very important to these and many other applications is the microelectronic device or system.

In the sub-area of microelectronics, electrical engineers design and fabricate electronic materials such as semiconductors, conductors and superconductors used in the manufacture of electronic devices. As a natural progression, electrical engineers design and fabricate electronic devices such as transistors, which control or modulate the flow of energy; sensors of light, mechanical force, chemicals, etc.; electromagnetic radiation sources such as lasers, light emitting diodes and microwave power sources. Following this progression, we find electrical engineers designing and fabricating integrated circuits such as microprocessors and memory elements; flat-panel displays, etc., which are found in applications ranging from supercomputers to watches, clocks and toys. Further in this progression we find electrical engineers designing and fabricating today's and tomorrow's computers.

Computer systems and application-specific integrated circuits are the elements that enable the existence of today's communication systems, such as the Internet, satellite systems, telemedicine, wired and wireless (cellular) telephones, along with standard and high definition television. Additionally, along with sensors, microwave power sources and actuators, they permit our present and future automated manufacturing lines, air and traffic control systems, and automotive safety and traffic control through collision avoidance radar systems, antilocking brake systems, air bag actuators, automatic traffic routing and the "smart highway" of the future.

Electrical engineers play an ever increasing role in the design and building of major facets of today's and tomorrow's health care systems and medical research through the application of microelectronic instrumentation and diagnostic tools such as MRI and CAT scan systems. The field of electrical engineering truly permeates every facet of our lives and thus provides excellent employment opportunities to the general practitioner or specialist in more than 35 different subspecialties.

Student learning outcomes

Upon completing this program, students will know and know how to do the following:

- 1. Identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
- 3. Communicate effectively with a range of audiences
- Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives

- 6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 7. Acquire and apply new knowledge as needed, using appropriate learning strategies

Special requirements

Program D grade policy: Students must receive a minimum grade of C in all engineering, computer science, physics, mathematics and all technical electives to graduate.

Degree requirements for Electrical Engineering, Bachelor of Science (B.S.)

Course	Title	Hours
	tps://bulletin.vcu.edu/undergraduate/	Hours
•	/general-education-curriculum/)	
Select 30 credits of go with an adviser.	eneral education courses in consultation	30
Major requirements		
Major core requirem	ents	
EGRE 101	Introduction to Engineering	3
EGRE 201	Fundamentals of Electrical and Computer Engineering	3
EGRE 206	Electric Circuits	4
EGRE 207	Electric Circuits II	4
EGRE 245	Engineering Programming	4
EGRE 246	Advanced Engineering Programming	3
EGRE 254	Digital Logic Design	4
EGRE 303	Electronic Devices	3
EGRE 306	Introduction to Microelectronics	4
EGRE 309	Introduction to Electromagnetic Fields	3
EGRE 310	Electromagnetic Fields and Waves	3
EGRE 335	Signals and Systems	4
EGRE 336	Introduction to Communication Systems	3
EGRE 337	Statistical Information Processing	3
EGRE 364	Microcomputer Systems	4
EGRE 399	Fundamentals of Design and Analysis	3
ENGR 395	Professional Development	1
Additional major req	uirements	
Select one of the follo	wing sequences:	4
EGRE 404 & EGRE 405	Senior Design Studio I (Laboratory/ Project Time) and Senior Design Studio II (Laboratory/Project Time)	
EGRE 406 & EGRE 407	Senior Design Studio I - VIP (Laboratory/Project Time) and Senior Design Studio II - VIP (Laboratory/Project Time)	
Technical electives (s	ee list and requirements below)	14
Math/science elective	e (see list below)	3
Ancillary requirement	S	
CHEM 101	General Chemistry I	3

Total Hours		127
Select any course.		3
Open electives		
PHYS 207	University Physics I (may also satisfy general education BOK for natural sciences and AOI for scientific and logical reasoning)	5
PHIL 201	Introduction to Ethics (satisfies general education BOK for humanities/fine arts and AOI for diversities in the human experience)	3
MATH 310	Linear Algebra	3
MATH 307	Multivariate Calculus	4
MATH 301	Differential Equations	3
MATH 201	Calculus with Analytic Geometry II	4
MATH 200	Calculus with Analytic Geometry I (satisfies general education quantitative foundations)	4
ECON 205	The Economics of Product Development and Markets (satisfies BOK for social/behavioral sciences and/or AOI for global perspectives)	3

The minimum number of credit hours required for this degree is 127.

Capstone project (four credits)

The program culminates in the capstone project. In order to prepare for the appropriate focus area of the capstone project, students, with the help of their academic adviser, should plan a course of study beginning in the fall semester of their junior year.

Technical electives (14 credits)

The technical electives in the junior and senior year must be chosen from the approved lists. The following criteria must be met:

- At least eight credit hours must be from approved electrical engineering electives (with or without lab).
- Courses not from the approved lists must be approved by the adviser and department chair.
- Courses must be technical courses at the 300-level or above.
- No more than three credit hours may come from independent study courses.
- If a student wants to apply ENGR 497 toward their technical electives, a minimum of four credit hours must be earned.
- A maximum of eight credits of ENGR 410, ENGR 497 and independent study courses may be used toward technical electives.

NOTE: Some of the listed courses may have prerequisites that do not count as technical electives.

Course	Title	Hours
Approved electrical	engineering electives with lab	
EGRE 307	Integrated Circuits	4
EGRE 334	Introduction to Microfabrication	4
EGRE 365	Digital Systems	4
EGRE 426	Computer Organization and Design	3
EGRE 428	Introduction to Integrated Systems Design	2

EGRE 429	Advanced Digital Systems Design and Analysis	3
EGRE 435	Microscale and Nanoscale Fabrication	4
EGRE 454	Automatic Controls	4
EGRE 535	Digital Signal Processing	3
Approved electrical er	ngineering electives without lab	
EGMN 315	Process and Systems Dynamics	3
EGMN 427	Robotics	3
EGRE 347	Applied Embedded Programming	3
EGRE 371	Power and Energy System Fundamentals	3
EGRE 436	Advanced Microscale and Nanoscale Fabrication	3
EGRE 444	Communication Systems	3
EGRE 455	Control Systems Design	3
EGRE 471	Power System Analysis	3
EGRE 510	Introduction to Internet of Things	3
EGRE 512	Intelligent Autonomous Systems	3
EGRE 513	Fundamentals of Modern Systems Engineering	3
EGRE 521	Advanced Semiconductor Devices	3
EGRE 525	Fundamentals of Photonics Engineering	3
EGRE 526/CMSC 506	Computer Networks and Communications	3
EGRE 531	Multicore and Multithreaded Programming	3
EGRE 532	GPU Computing	3
EGRE 536	Introduction to Cyber-Physical Systems	3
EGRE 540	Microwave System Design	3
EGRE 541	Medical Devices	3
EGRE 553	Industrial Automation	3
EGRE 554	Advanced Industrial Automation	3
EGRE 555	Dynamics and Multivariable Control I	3
EGRE 573	Sustainable and Efficient Power Systems	3
ENGR 410	Review of Internship (Completion of internship required)	1
Approved electives ou	Itside electrical engineering	
CMSC 312	Introduction to Operating Systems	3
CMSC 355	Fundamentals of Software Engineering	3
CMSC 420	Software Project Management	3
EGMN 309	Material Science for Engineers	3
EGMN 321	Numerical Methods	3
EGRB 407	Physical Principles of Medical Imaging	3
EGRB 408	Advanced Biomedical Signal Processing	3
EGRB 507	Biomedical Electronics and Instrumentation	3
ENGR 497	Vertically Integrated Projects	1,2
		0
MATH 351	Applied Abstract Algebra	3

PHYS 320	Modern Physics	3
PHYZ 320	Modern Physics Laboratory	1

Math/science electives (3 credits)

Students must complete 3 credits using one course or a combination of courses from the list below.

Course	Title	Hours
BIOL 151	Introduction to Biological Sciences I	3
BIOZ 151	Introduction to Biological Science Laboratory I	1
BIOL 152	Introduction to Biological Sciences II	3
BIOZ 152	Introduction to Biological Science Laboratory II	1
CHEZ 101	General Chemistry Laboratory I	1
CHEM 102	General Chemistry II	3
CHEZ 102	General Chemistry Laboratory II	1
MATH 300	Introduction to Mathematical Reasoning	3
MATH 305	Elementary Number Theory	3
MATH 324	Mathematical Problem Solving	3
MATH 350	Introductory Combinatorics	3
MATH 351	Applied Abstract Algebra	3
MATH 356	Graphs and Algorithms	3
MATH 370	Mathematical Foundations for Artificial Intelligence	3
PHYS 208	University Physics II	5
PHYS 301	Classical Mechanics I	3
PHYS 302	Classical Mechanics II	3
PHYS 320	Modern Physics	3
PHYZ 320	Modern Physics Laboratory	1

What follows is a sample plan that meets the prescribed requirements within a four-year course of study at VCU. Please contact your adviser before beginning course work toward a degree.

Freshman year

Fall semester		Hours
CHEM 101	General Chemistry I	3
EGRE 101	Introduction to Engineering	3
MATH 200	Calculus with Analytic Geometry I (satisfies general education quantitative foundations)	4
UNIV 111 Play course video for Introduction to Focused Inquiry: Investigation and Communicati	Introduction to Focused Inquiry: Investigation and Communication (satisfies general education UNIV foundations)	3
	ation course (select AOI for creativity, d aesthetic inquiry)	3
	Term Hours:	16
o	A	

Spring semester

EGRE 201	Fundamentals of Electrical and Computer Engineering	3
EGRE 254	Digital Logic Design	4
MATH 201	Calculus with Analytic Geometry II	4
UNIV 112 Play course video for Focused Inquiry II	Focused Inquiry II (satisfies general education UNIV foundations)	3
General educa	ation course (select AOI for scientific and ing if not already satisfied)	3
	Term Hours:	17
Sophomore ye	ear	
Fall semester		
EGRE 206	Electric Circuits	4
EGRE 245	Engineering Programming	4
ENGR 395	Professional Development	1
MATH 301	Differential Equations	3
PHYS 207	University Physics I	5
	Term Hours:	17
Spring semes	ter	
EGRE 207	Electric Circuits II	4
EGRE 246	Advanced Engineering Programming	3
EGRE 335	Signals and Systems	4
EGRE 337	Statistical Information Processing	3
MATH 310	Linear Algebra	3
	Term Hours:	17
Junior year	Term Hours:	17
Junior year Fall semester	Term Hours:	17
-	Term Hours: Introduction to Microelectronics	17
Fall semester		
Fall semester EGRE 306	Introduction to Microelectronics	4
Fall semester EGRE 306 EGRE 336	Introduction to Microelectronics Introduction to Communication Systems	4
Fall semester EGRE 306 EGRE 336 EGRE 364	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems	4 3 4
Fall semester EGRE 306 EGRE 336 EGRE 364	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours:	4 3 4 4
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours:	4 3 4 4
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter	4 3 4 4 15
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics	4 3 4 4 15 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 399	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies,	4 3 4 4 15 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 399 PHIL 201 UNIV 200	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication	4 3 4 4 15 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 399 PHIL 201	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication etives	4 3 4 4 15 3 3 3 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elect	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication	4 3 4 4 15 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 399 PHIL 201 UNIV 200 Technical elect Senior year	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication etives	4 3 4 4 15 3 3 3 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elect Senior year Fall semester	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication strives Term Hours:	4 3 4 4 15 3 3 3 3 3 3 3 5
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semess EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elect Senior year Fall semester EGRE 303	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication etives Term Hours: Electronic Devices	4 3 4 4 15 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elector Senior year Fall semester EGRE 303 EGRE 310	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication etives Term Hours: Electronic Devices Electromagnetic Fields and Waves	4 3 4 4 15 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elect Senior year Fall semester EGRE 303 EGRE 310 EGRE 310	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication etives Term Hours: Electronic Devices Electromagnetic Fields and Waves Senior Design Studio I (Laboratory/Project	4 3 4 4 15 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elect Senior year Fall semester EGRE 303 EGRE 310 EGRE 404 or	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication etives Term Hours: Electronic Devices Electromagnetic Fields and Waves Senior Design Studio I (Laboratory/Project Time)	4 3 4 4 15 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elect Senior year Fall semester EGRE 303 EGRE 310 EGRE 310	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication etives Term Hours: Electronic Devices Electromagnetic Fields and Waves Senior Design Studio I (Laboratory/Project	4 3 4 4 15 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Fall semester EGRE 306 EGRE 336 EGRE 364 MATH 307 Spring semes EGRE 309 EGRE 309 PHIL 201 UNIV 200 Technical elect Senior year Fall semester EGRE 303 EGRE 310 EGRE 404 or	Introduction to Microelectronics Introduction to Communication Systems Microcomputer Systems Multivariate Calculus Term Hours: ter Introduction to Electromagnetic Fields Fundamentals of Design and Analysis Introduction to Ethics Advanced Focused Inquiry: Literacies, Research and Communication Advanced Focused Inquiry: Literacies, Research and Communication trives Electronic Devices Electronic Devices Electromagnetic Fields and Waves Senior Design Studio I (Laboratory/Project Time) or Senior Design Studio I - VIP (Laboratory/Project Time)	4 3 4 4 15 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Spring semester

ECON 205	The Economics of Product Development and Markets	3
EGRE 405 or EGRE 407	Senior Design Studio II (Laboratory/Project Time) or Senior Design Studio II - VIP (Laboratory/Project Time)	2
Technical ele	ctives	4
Math/science	e elective	3
Open elective		3
	Term Hours:	15
	Total Hours:	127

The minimum number of credit hours required for this degree is 127.

Accelerated B.S. and M.S.

The accelerated B.S. and M.S. program allows qualified students to earn both the B.S. in Electrical Engineering and M.S. in Biomedical Engineering in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to 12 hours (non-thesis option) or 12 hours (thesis option) of graduate courses toward both the B.S. and M.S. degrees. Thus, the two degrees may be earned with a minimum of 148 credits rather than the 160 credits necessary if the two degrees are pursued separately.

Students holding these degrees will have a head start for pursuing careers in industry or continuing in academia. The M.S. degree provides formal research experience and can lead to expanded job opportunities, greater potential for job advancement and higher starting salaries.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to this accelerated program include an overall GPA of 3.0. Additionally, for students pursuing the thesis option of the master's program, a letter of endorsement from a prospective thesis adviser from the biomedical engineering faculty must accompany the application. Students who are interested in the accelerated program should consult with the faculty adviser to the biomedical engineering graduate program before they have completed 95 credits. Successful applicants would enter the program in the fall semester of their senior year.

Once enrolled in the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/ academic-regs/grad/satisfactory-academic-progress/)" section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the ECE undergraduate program director and the BME graduate program director.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a formal application. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. A reference letter from an electrical engineering faculty member must accompany the application.

Degree requirements

The Bachelor of Science in Electrical Engineering degree will be awarded upon completion of a minimum of 130 credits and the satisfactory completion of all undergraduate degree requirements as stated in the **Undergraduate Bulletin**.

A maximum of 12 credits of graduate level courses may be taken prior to completion of the baccalaureate degree. These graduate credits will count as open or technical elective credits for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

The graduate courses that may be taken as an undergraduate, once a student is admitted to the program, must be approved by the adviser or graduate program director and include 500-level courses from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC, INNO and OVPR.

Recommended plan of study for thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the senior year prior to admission to the accelerated program in the senior year.

Course Senior year	Title	Hours
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proj Time)	ject
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (co pathway)	onsider BME course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	oject
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (consider BME course for accelerated pathway)		6
Other required B.S. c	ourse work	7

Term Hours:		16
Fifth year		
Fall semester		
EGRB 601	Numerical Methods and Modeling in Biomedical Engineering	4
EGRB 697	Directed Research in Biomedical Engineering	3
Open elective ¹		3
Term Hours:		10
Spring semester		
EGRB 602	Biomedical Engineering Systems Physiology	4
EGRB 690	Biomedical Engineering Research Seminar	1
EGRB 697	Directed Research in Biomedical Engineering	4
Term Hours:		9
1		

EGRB, EGMN, ENGR, PHYS, MATH, CMSC, BIOL, PHIS or BIOC at 500-level or above.

Recommended plan of study for non-thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the senior year prior to admission to the accelerated program in the senior year.

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proje Time)	ct
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider BME course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Proje Time)	ect
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider BME course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Fifth year		
Fall semester		
EGRB 601	Numerical Methods and Modeling in Biomedical Engineering	4
EGRB technical elec	tives (500-level or above)	3

Open elective ¹	6
Term Hours:	13
Spring semester	
EGRB 602 Biomedical Er Physiology	gineering Systems 4
EGRB 690 Biomedical Er Seminar	gineering Research 1
Open elective ¹	6
Term Hours:	11

EGRB, EGMN, ENGR, PHYS, MATH, CMSC, BIOL, PHIS or BIOC at 500-level or above.

Accelerated B.S. and M.S.

1

The accelerated B.S. and M.S. program allows qualified students to earn both the B.S. in Electrical Engineering and M.S. in Computer Science in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to 12 hours (non-thesis option) or 12 hours (thesis option) of graduate courses toward both the B.S. and M.S. degrees. Thus, the two degrees may be earned with a minimum of 150 credits rather than the 162 credits necessary if the two degrees are pursued separately.

The program is designed to develop skills and educate computer science students to be major contributors in the computing industry. The graduate program in computer science provides state-of-the-art education through the use of didactic courses to those students who wish to further their knowledge and careers within the computing industry. The program emphasizes continuing self-development and broadening of the knowledge of individuals currently engaged in science, technology and engineering-related fields. It also prepares persons who have completed undergraduate majors in these fields for entry into a career in the numerous areas that use computing technology. Both the theoretical and applied aspects of computer science are emphasized in this program.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible (sophomore year is recommended)

to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to this accelerated program include completion of 30 undergraduate credit hours with an overall GPA of 3.0. For acceptance into this accelerated pathway, students must have completed CMSC 257, CMSC 311, CMSC 355, and CMSC 401 courses with a GPA of at least 3.4. Successful applicants would enter the program in the fall semester of their senior year.

Once enrolled in the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/ academic-regs/grad/satisfactory-academic-progress/)" section of

the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the ECE undergraduate program director and the CS graduate program director.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a formal application. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. A reference letter from an electrical engineering faculty member must accompany the application.

Degree requirements

The Bachelor of Science in Electrical Engineering degree will be awarded upon completion of a minimum of 130 credits and the satisfactory completion of all undergraduate degree requirements as stated in the **Undergraduate Bulletin**.

For students entering the non-thesis option, a maximum of six graduate credits may be taken prior to the completion of the baccalaureate degree. For students entering the thesis option, a maximum of 12 graduate credits may be taken. These graduate credits will count as open or technical elective credits for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

The graduate courses that may be taken as an undergraduate, once a student is admitted to the program, must be approved by the adviser or graduate program director and include 500-level courses from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC, INNO and OVPR.

Recommended course sequence/plan of study for students pursuing a thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the junior year prior to admission to the accelerated program in the senior year.

Course Senior year	Title	Hours
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proj Time)	ect
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider CS course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2

or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	oject
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (pathway)	consider CS course for accelerated	6
Other required B.S.	course work	7
Term Hours:		16
Fifth year		
Fall semester		
CMSC 697	Directed Research	3
M.S. foundational a	area courses (theory and systems) 1	6
Term Hours:		9
Spring semester		
CMSC 697	Directed Research	6
M.S. foundational a	area courses (applied)	3
Term Hours:		9
1		

See the Graduate Bulletin for the list of theory, systems, and applied foundational courses.

Recommended plan of study for non-thesis master's

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the senior year prior to admission to the accelerated program in the senior year.

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Proj Time)	ect
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (co pathway)	onsider CS course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	ject
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (co pathway)	onsider CS course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Fifth year		
Fall semester		
M.S. foundational are	ea courses (theory and systems) 1	9
Term Hours:		9
Spring semester		

Graduate didactic course work	9
Term Hours:	9

See the Graduate Bulletin for the list of theory, systems, and applied foundational area courses.

Accelerated B.S. and M.S.

1

The accelerated B.S.-to-M.S. program allows gualified students to earn both the B.S. in Electrical Engineering and the M.S. in Engineering, concentration in aerospace engineering; chemical and life science engineering; electrical and computer engineering; engineering management; environmental and sustainable engineering; rehabilitation engineering; systems engineering; or tissue engineering and regenerative medicine in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to six hours (non-thesis option) or 12 hours (thesis option) of graduate courses toward both the B.S. and M.S. degrees.

Students holding these degrees will have a head start for pursuing careers in industry or continuing in academia. The M.S. degree provides formal research experience and can lead to expanded job opportunities, greater potential for job advancement and higher starting salaries.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to any accelerated program include completion of 95 undergraduate credit hours and a minimum overall GPA of 3.0. Students who are interested in the accelerated program should consult with the faculty adviser to the graduate program before they have completed 95 credits. Successful applicants would enter the program in the following semester after graduation with the bachelor's degree..

Once enrolled in the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/ academic-regs/grad/satisfactory-academic-progress/)" section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the undergraduate graduate program adviser and the graduate program director.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a formal application to the master's program, which is submitted through Graduate Admissions no later than a semester prior to graduation with

the baccalaureate degree, that is before the end of the fall semester of the senior year. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. The GRE and application fee is waived for admission to the program for all students. Additionally, for students pursuing the thesis option of the master's program, a letter of endorsement from a prospective thesis adviser from a faculty member in the relevant department may accompany the application.

Degree requirements

The Bachelor of Science in Electrical Engineering Engineering degree will be awarded upon completion of all undergraduate degree requirements as stated in the Undergraduate Bulletin.

For students entering the non-thesis option, a maximum of six graduate credits may be taken prior to the completion of the baccalaureate degree. For students entering the thesis option, a maximum of 12 graduate credits may be taken. These graduate credits will count as open or technical elective credits for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

The graduate courses that may be taken as an undergraduate, once a student is admitted to the program, must be approved by the adviser or graduate program director and include 500-level courses from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC, INNO and OVPR.

Curriculum requirements

Concentration in aerospace engineering

Thesis option		
Course	Title	Hours
Required gradua	te-level coursework	
a minimum of 9 o in EGRE, ENGR, E advisory commit	ther relevant graduate course work (including credit hours from 500-level or higher courses EGRB, EGMN, CMSC, CLSE) approved by the tee: This component allows the student to either engineering or science with approval of viser.	12
Concentration co	omponent	
EGMN 604	Mechanical and Nuclear Engineering Materials	3
EGMN 605	Mechanical and Nuclear Engineering Analysis	3
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	3
EGMN 607	Heat and Mass Transfer Theory and Applications	3
Directed researc	h component	
	emphasizes research directed toward gree requirements under the direction of an sory committee.	
EGMN 697	Directed Research in Mechanical and Nuclear Engineering	6
Total Hours		30

7

Non-thesis option		
Course	Title	Hours
Required graduate-	level coursework	
a minimum of 9 creatin EGRE, ENGR, EGF adviser: This compo	r relevant graduate course work (including dit hours from 500-level or higher courses RB, EGMN, CMSC, CLSE) approved by the onent allows the student to take courses g or science with approval of the student's	15
Concentration comp	ponent	
EGMN 604	Mechanical and Nuclear Engineering Materials	3
EGMN 605	Mechanical and Nuclear Engineering Analysis	3
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	3
EGMN 607	Heat and Mass Transfer Theory and Applications	3
EGMN 661	Computational Fluid Dynamics	3
Total Hours		30

Concentration in chemical and life science engineering

Thesis option		y
Course	Title	Hours
Required graduat	te-level coursework	
a minimum of 6 c in EGRE, ENGR, E by the advisory c	ther relevant graduate course work (including credit hours from 500-level or higher courses GRB, EGMN, CMSC, CLSE, PESC) approved ommittee: This component allows the ourses in either engineering or science with tudent's adviser.	9
Concentration co	omponent - CLSE course work	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	3
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	3
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	3
CLSE 656	Advanced Chemical Reaction Engineering	3
Choose additiona	al CLSE course work at the 500 level or higher	3
Directed research	h	
Select six credit I	hours from the following:	6
CLSE 690	Research Seminar in Chemical and Life Science Engineering	
CLSE 697	Directed Research in Chemical and Life Science Engineering	
Total Hours		30

Non-thesis optio	n	
Course	Title	Hours
Required gradua	ate-level coursework	
a minimum of 9 in EGRE, ENGR, by the adviser. T	other relevant graduate course work (including credit hours from 500-level or higher courses EGRB, EGMN, CMSC, CLSE, PESC) approved 'his component allows the student to take r engineering or science with approval of the er.	12
Concentration c	omponent - CLSE course work	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	3
CLSE 654	Equilibrium Analysis in Chemical and Biological Systems	3
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	3
CLSE 656	Advanced Chemical Reaction Engineering	3
Choose addition	al CLSE course work at the 500 level or higher	6
Total Hours		30

Concentration in electrical and computer engineering

Thesis option		
Course	Title	Hours
Required graduate-lev	vel coursework	
a minimum of 9 credit in EGRE, ENGR, EGRB advisory committee: 1	elevant graduate course work (including t hours from 500-level or higher courses , EGMN, CMSC, CLSE) approved by the Fhis component allows the student to engineering or science with approval of	12
Concentration compo	nent	
approved by the advis allows the student to	GRE 500-level or higher or courses cory committee): This component pursue a series of courses that focus engineering and serve as the student's liscipline.	12
Directed research con	nponent	
	hasizes research directed toward requirements under the direction of an committee.	
EGRE 697	Directed Research in Electrical and Computer Engineering	6
Total Hours		30
Non-thesis option		
Course	Title	Hours
Required graduate-lev	vel coursework	
a minimum of 9 credit in EGRE, ENGR, EGRB adviser. This compone	elevant graduate course work (including t hours from 500-level or higher courses , EGMN, CMSC, CLSE) approved by the ent allows the student to take courses or science with approval of the student's	15
Concentration compo	nent	

Concentration component

EGRE course work (EGRE 500-level or higher or courses	15
approved by the adviser): This component allows the student	
to pursue a series of courses that focus on a specific field of	
engineering and serve as the student's primary engineering	
discipline.	
Total Hours	30

Concentration in engineering management

```
Course Title Hours
Required graduate-level coursework
```

18

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Total Hours		30
ENGR 696	Engineering Products and Economic Considerations	3
ENGR 602	Engineering Contracts and Effective Negotiations	3
ENGR 601	Engineering Project Management	3
EGMN 507	Law and Engineering	3
Concentration co	omponent	

Concentration in environmental and sustainable

engineering

Thesis option

```
Course
                     Title
                                                                Hours
Required graduate-level coursework
Engineering or other relevant graduate course work (including
                                                                    12
a minimum of 9 credit hours from 500-level or higher courses
in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the
advisory committee: This component allows the student to
take courses in either engineering or science with approval of
the student's adviser.
Concentration component
CLSE 545
                     Water Essentials
                                                                     3
CLSE 580
                     Sustainable Chemical Engineering
                                                                     3
CLSE 650
                     Quantitative Analysis in Chemical and
                                                                     3
                     Life Science Engineering
CLSE 655
                     Nonequilibrium Analysis in Chemical
                                                                     3
                     and Life Science Engineering
Directed research component
This component emphasizes research directed toward
completion of degree requirements under the direction of an
adviser and advisory committee.
CLSE 697
                     Directed Research in Chemical and Life
                                                                     6
                     Science Engineering
Total Hours
                                                                    30
```

Non-thesis option	T .41-	
Course	Title	Hours
Required graduate-le		10
a minimum of 9 cred in EGRE, ENGR, EGRE adviser. This compor	relevant graduate course work (including it hours from 500-level or higher courses 3, EGMN, CMSC, CLSE) approved by the nent allows the student to take courses or science with approval of the student's	18
Concentration comp	onent	
CLSE 545	Water Essentials	3
CLSE 580	Sustainable Chemical Engineering	3
CLSE 650	Quantitative Analysis in Chemical and	3
	Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	3
Total Hours		30
Concentration in	rehabilitation engineering	
	renabilitation engineering	
Thesis option Course	Title	Hours
Required graduate-le		Tiours
	relevant graduate course work (including	8
5 5	it hours from 500-level or higher courses	0
	3, EGMN, CMSC, CLSE) approved by the	
	This component allows the student to	
take courses in eithe	r engineering or science with approval of	
the student's adviser		
Concentration comp	onent	
EGRB 520	Assistive Technology	3
EGRB 521	Human Factors Engineering	3
EGRB 523	Rehabilitation Engineering and Prostheses	3
EGRB 603	Biomedical Signal Processing	3
ANAT 610	Systems Neuroscience	4
Directed research		
EGRB 697	Directed Research in Biomedical Engineering	6
Total Hours	-	30
Non-thesis option Course	Title	Hours
Required graduate-le		Tiours
		14
	relevant graduate course work (including it hours from 500-level or higher courses	14
	B, EGMN, CMSC, CLSE) approved by the	
	nent allows the student to take courses	
in either engineering	or science with approval of the student's	
adviser.		
Concentration compo		
EGRB 520	Assistive Technology	3
EGRB 521	Human Factors Engineering	3
EGRB 523	Rehabilitation Engineering and Prostheses	3
EGRB 603	Biomedical Signal Processing	3

30 Hours 12
12
12
12
3
3
3
3
3
3
6
30
Hours
18
3
3
3

the student's adviser.

Concentration component - TERM course work

EGRB 512 **Regenerative Engineering and Medicine** 3 **EGRB 613** 3 **Biomaterials EGRB 614 Tissue Engineering** 3 **EGRB 616 Cell Engineering** 3 **Directed research EGRB 697** Directed Research in Biomedical 6 Engineering **Total Hours** 30 Non-thesis option Title Course Hours **Required graduate-level coursework** Engineering or other relevant graduate course work (including 15 a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser. **Concentration component - TERM course work EGRB 512 Regenerative Engineering and Medicine** 3 **EGRB 613 Biomaterials** 3 3 **EGRB 614 Tissue Engineering EGRB 616 Cell Engineering** 3 3 Choose additional course work at the 500 level or higher **Total Hours** 30

Recommended course sequence/plan of study What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the junior/senior year prior to admission to the accelerated program in the senior year.

Course	Title	Hours
Junior year		
Fall semester		
EGRE 306	Introduction to Microelectronics	4
EGRE 309	Introduction to Electromagnetic Fields	3
EGRE 337	Statistical Information Processing	3
EGRE 364	Microcomputer Systems	4
PHIL 201	Introduction to Ethics	3
Term Hours:		17
Spring semester		
ECON 205	The Economics of Product Development and Markets	3
		0
EGRE 303	Electronic Devices	3
EGRE 310	Electromagnetic Fields and Waves	3
EGRE 336	Introduction to Communication Systems	3
Technical elective		4
Term Hours:		16

Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
OR		
EGRE 406	Senior Design Studio I - VIP (Laboratory/Project Time)	
ENGR 402	Senior Design Studio (Seminar)	1
EGRE (5xx)		6
Other required B.S.	course work	7
Term Hours:		16
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
OR		
EGRE 407	Senior Design Studio II - VIP (Laboratory/Project Time)	
ENGR 403	Senior Design Studio (Seminar)	1
EGRE 5xx ¹		6
Other required B.S.	course work	7
Term Hours:		16
1		

EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC and OVPR at 500-level or above

Concentration in aerospace engineering

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate	e-level courses ¹	3
Concentration spe	ecific courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	
EGMN 607	Heat and Mass Transfer Theory and Applications	
Directed research	2	3
EGMN 697	Directed Research in Mechanical and Nuclear Engineering	
Term Hours:		12
Spring semester		
Required graduate	e-level courses ¹	3
Concentration spe	ecific courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	

EGMN 607	Heat and Mass Transfer Theory and Applications	
Directed research ²		3
EGMN 697	Directed Research in Mechanical and Nuclear Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate-	level courses ¹	3
Concentration spec	ific courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	
EGMN 607	Heat and Mass Transfer Theory and Applications	
EGMN 661	Computational Fluid Dynamics	
Term Hours:		9
Spring semester		
Required graduate-	level courses ¹	3
Concentration spec	ific courses	6
EGMN 604	Mechanical and Nuclear Engineering Materials	
EGMN 605	Mechanical and Nuclear Engineering Analysis	
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	
EGMN 607	Heat and Mass Transfer Theory and Applications	
EGMN 661	Computational Fluid Dynamics	
Term Hours:		9
1		

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

2

Concentration in chemical and life science engineering

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate-	level courses ¹	3
Concentration spec	cific courses	6
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	

CLSE 654	Equilibrium Analysis in Chemical and Biological Systems		CLSE 656	Advanced Chemical Reaction Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering		Term Hours:		9
CLSE 656	Advanced Chemical Reaction		1		
Directed research	Engineering	2		er relevant graduate course work (including a	
		3		om 500-level or higher courses in EGRE, ENG	
CLSE 690	Research Seminar in Chemical and Life Science Engineering		student to take cou	E) approved by the adviser. This component a urses in either engineering or science with ap	
CLSE 697	Directed Research in Chemical and Life Science Engineering		the student's advis	ser.	
Term Hours:		12			
Spring semester				nphasizes research directed toward complet	
Required graduat	e-level courses ¹	3		ts under the direction of an adviser and advis	sory
Concentration sp	ecific courses	6	committee.		
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering			n in electrical and computer engine	ering
CLSE 654	Equilibrium Analysis in Chemical and		Course	Title	Hours
	Biological Systems		Fifth year		
CLSE 655	Nonequilibrium Analysis in Chemical		Thesis option		
	and Life Science Engineering		Fall semester	1	
CLSE 656	Advanced Chemical Reaction		Required graduate		3
	Engineering		Concentration spe		6
	onal CLSE course work at the 500 level or		Directed research		3
higher	2		EGRE 697	Directed Research in Electrical and	
Directed research		3		Computer Engineering	
CLSE 690	Research Seminar in Chemical and Life		Term Hours:		12
	Science Engineering		Spring semester	1	
CLSE 697	Directed Research in Chemical and Life Science Engineering		Required graduate		3
Term Hours:	Science Engineering	12	Concentration spe		6
Non-thesis option	n	12	Directed research		3
Fall semester	•		EGRE 697	Directed Research in Electrical and	
Required graduat	e-level courses 1	3	T	Computer Engineering	10
Concentration sp		6	Term Hours:		12
	Quantitative Analysis in Chemical and	U	Non-thesis option		
CLSL 050	Life Science Engineering		Fall semester	1	0
CLSE 654	Equilibrium Analysis in Chemical and		Required graduate Concentration spe		3
	Biological Systems		•	chic courses	6
CLSE 655	Nonequilibrium Analysis in Chemical		Term Hours:		9
	and Life Science Engineering		Spring semester Required graduate		2
CLSE 656	Advanced Chemical Reaction		Concentration spe	-	3 6
Term Hours:	Engineering	9	Term Hours:		9
Spring semester		5	1		
Required graduat	e-level courses 1	3			
Concentration sp		6	Engineering or oth	er relevant graduate course work (including a	a minimum
CLSE 650	Quantitative Analysis in Chemical and	0		om 500-level or higher courses in EGRE, ENG E) approved by the adviser. This component	
CLSE 654	Life Science Engineering Equilibrium Analysis in Chemical and Biological Systems		student to take cou the student's advis	urses in either engineering or science with ap ser.	proval of
CLSE 655	Nonequilibrium Analysis in Chemical		2		
	and Life Science Engineering			(EGRE 500-level or higher or courses approv	-

advisory committee): This component allows the student to pursue a

series of courses that focus on a specific field of engineering and serve as the student's primary engineering discipline.

3

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in engineering management

	5 5 5	
Course	Title	Hours
Fifth year		
Fall semester		
Required graduate	level courses ¹	3
Concentration spe	cifc courses	6
EGMN 507	Law and Engineering	
ENGR 601	Engineering Project Management	
ENGR 602	Engineering Contracts and Effective Negotiations	
ENGR 696	Engineering Products and Economic Considerations	
Term Hours:		9
Spring semester		
Required graduate	level courses	3
Concentration spec	cific courses	6
EGMN 507	Law and Engineering	
ENGR 601	Engineering Project Management	
ENGR 602	Engineering Contracts and Effective Negotiations	
ENGR 696	Engineering Products and Economic Considerations	
1		

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

Concentration in environmental and sustainable engineering

Course Fifth year	Title	Hours
Thesis option		
Fall semester		
Required graduate-le	evel courses ¹	3
Concentration speci	fic	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Directed research ²		3
CLSE 697	Directed Research in Chemical and Life Science Engineering	

Term Hours:		12
Spring semester		
Required graduate-le	evel courses ¹	3
Concentration speci	fic courses	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Directed research ²		3
CLSE 697	Directed Research in Chemical and Life Science Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate-le	evel courses ¹	3
Concentration speci	fic courses	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Term Hours:		9
Spring semester		
Required graduate-le	evel courses ¹	3
Concentration speci	fic courses	6
CLSE 545	Water Essentials	
CLSE 580	Sustainable Chemical Engineering	
CLSE 650	Quantitative Analysis in Chemical and Life Science Engineering	
CLSE 655	Nonequilibrium Analysis in Chemical and Life Science Engineering	
Term Hours		9
1		

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in rehabilitation engineering

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate-lev	el courses ¹	3

Concentration specific courses		6	This component emphasizes research directed toward co degree requirements under the direction of an adviser and	
EGRB 520	Assistive Technology		committee.	
EGRB 521	Human Factors Engineering			
EGRB 523	Rehabilitation Engineering and Prostheses		Concentration	in systems engineering
EGRB 603	Biomedical Signal Processing		Course	Title
ANAT 610	Systems Neuroscience		Fifth year	
Directed research		3	Thesis option	
EGRB 697	Directed Research in Biomedical	U	Fall semester	
LOND 001	Engineering		Required graduate-level courses ¹	
Term Hours:	5	12	Concentration spe	ecific courses
Spring semester			EGRE 510	Introduction to Internet of Things
Required graduate	e-level courses ¹	3	EGRE 512	Intelligent Autonomous Systems
Concentration spe		6	EGRE 513	Fundamentals of Modern Systems
EGRB 520	Assistive Technology			Engineering
EGRB 521	Human Factors Engineering		EGRE 615	Systems Modeling
EGRB 523	Rehabilitation Engineering and		Directed research	
	Prostheses		EGRE 697	Directed Research in Electrical and Computer Engineering
EGRB 603	Biomedical Signal Processing		Term Hours:	
ANAT 610	Systems Neuroscience		Spring semester	
Directed research	2	3	Required graduate	-level courses ¹
EGRB 697	Directed Research in Biomedical		Concentration spe	
	Engineering		EGRE 510	Introduction to Internet of Things
Term Hours:		12	EGRE 512	Intelligent Autonomous Systems
Non-thesis option	1		EGRE 512	Fundamentals of Modern Systems
Fall semester	1		LONE 515	Engineering
Required graduate		3	EGRE 615	Systems Modeling
Concentration spe	ecific courses	6	Directed research	
EGRB 520	Assistive Technology		EGRE 697	Directed Research in Electrical and
EGRB 521	Human Factors Engineering		LONE 057	Computer Engineering
EGRB 523	Rehabilitation Engineering and Prostheses		Term Hours:	1 5 5
EGRB 603	Biomedical Signal Processing		Non-thesis option	
ANAT 610	Systems Neuroscience		Fall semester	
Term Hours:	Systems Neuroscience	9	Required graduate	e-level courses ¹
Spring semester		5	Concentration spe	cific courses
Required graduate	a lavel courses ¹	3	EGRE 510	Introduction to Internet of Things
Concentration spe		6	EGRE 512	Intelligent Autonomous Systems
EGRB 520	Assistive Technology	0	EGRE 513	Fundamentals of Modern Systems
EGRB 520 EGRB 521				Engineering
EGRB 521 EGRB 523	Human Factors Engineering		EGRE 615	Systems Modeling
EGRD 523	Rehabilitation Engineering and Prostheses		Term Hours:	
EGRB 603	Biomedical Signal Processing		Spring semester	
ANAT 610	Systems Neuroscience		Required graduate-level courses ¹	
Term Hours:		9	Concentration spe	cific courses
		9	EGRE 510	Introduction to Internet of Things
1			EGRE 512	Intelligent Autonomous Systems

EGRE 513

EGRE 615

Term Hours

1

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

toward completion of adviser and advisory

9

Engineering

Systems Modeling

Fundamentals of Modern Systems

Hours

3 6

3

12

3 6

3

12

3 6 Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Concentration in tissue engineering and regenerative medicine

Course	Title	Hours
Fifth year		
Thesis option		
Fall semester		
Required graduate	-level courses '	3
Concentration spe	cific courses	6
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
EGRB 614	Tissue Engineering	
EGRB 616	Cell Engineering	
Directed research ²	2	3
EGRB 697	Directed Research in Biomedical Engineering	
Term Hours:		12
Spring semester		
Required graduate	-level courses ¹	3
Concentration spe	cific courses	6
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
EGRB 614	Tissue Engineering	
EGRB 616	Cell Engineering	
Directed research ²	2	3
EGRB 697	Directed Research in Biomedical Engineering	
Term Hours:		12
Non-thesis option		
Fall semester		
Required graduate	-level courses	3
Concentration spe	cific courses	6
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
EGRB 614	Tissue Engineering	
EGRB 616	Cell Engineering	
Term Hours:	5 5	9
Required graduate	-level courses	
Concentration spec		
EGRB 512	Regenerative Engineering and Medicine	
EGRB 613	Biomaterials	
FGRB 614	Tissue Engineering	
2010 011		

EGRB 616	Cell Engineering	
Term Hours:		9
_		

Engineering or other relevant graduate course work (including a minimum of 9 credit hours from 500-level or higher courses in EGRE, ENGR, EGRB, EGMN, CMSC, CLSE) approved by the adviser. This component allows the student to take courses in either engineering or science with approval of the student's adviser.

2

This component emphasizes research directed toward completion of degree requirements under the direction of an adviser and advisory committee.

Accelerated B.S. and M.S.

The accelerated B.S. and M.S. program allows qualified students to earn both the B.S. in Electrical Engineering and M.S. in Mechanical and Nuclear Engineering in a minimum of five years by completing approved graduate courses during the senior year of their undergraduate program. Students in the program may count up to 12 credit hours of graduate courses toward both the B.S. and M.S. degrees. Thus, the two degrees may be earned with a minimum of 148 credits rather than the 160 credits necessary if the two degrees are pursued separately.

Students holding these degrees will have a head start for pursuing careers in industry or continuing in academia. The M.S. degree provides formal research experience and can lead to expanded job opportunities, greater potential for job advancement and higher starting salaries.

Entrance to the accelerated program

Interested undergraduate students should consult with their adviser as early as possible to receive specific information about the accelerated program, determine academic eligibility and submit (no later than two semesters prior to graduating with a baccalaureate degree, that is, before the end of the spring semester of their junior year) an Accelerated Program Declaration Form to be approved by the graduate program director. Limited spaces may be available in the accelerated program. Academically qualified students may not receive approval if capacity has been reached.

Minimum qualifications for entrance to this accelerated program includes an overall GPA of 3.0.

Once admitted into the accelerated program, students must meet the standards of performance applicable to graduate students as described in the "Satisfactory academic progress (https://bulletin.vcu.edu/ academic-regs/grad/satisfactory-academic-progress/)" section of the Graduate Bulletin, including maintaining a 3.0 GPA. Guidance to students admitted to the accelerated program is provided by both the undergraduate mechanical engineering adviser and the graduate program director for the master's degree.

Admission to the graduate program

Entrance to the accelerated program enables the student to take the approved shared courses that will apply to the undergraduate and graduate degrees. However, entry into an accelerated program via an approved Accelerated Program Declaration Form does not constitute application or admission into the graduate program. Admission to the graduate program requires a separate step that occurs through a formal application. In order to continue pursuing the master's degree after the baccalaureate degree is conferred, accelerated students must follow the admission to graduate study requirements outlined in the VCU Bulletin. A reference letter from an electrical engineering faculty member must accompany the application.

Degree requirements

The Bachelor of Science in Electrical Engineering degree will be awarded upon completion of a minimum of 130 credits and the satisfactory completion of all undergraduate degree requirements as stated in the **Undergraduate Bulletin**.

A maximum of 12 graduate credits of 500-level graduate courses may be taken prior to completion of the baccalaureate degree. These graduate credits will be utilized to fulfill engineering electives course requirements for the undergraduate degree. These courses are shared credits with the graduate program, meaning that they will be applied to both undergraduate and graduate degree requirements.

Once a student is admitted to the program, with the approval of their adviser, they may choose any 500-level course from the following subject areas: EGMN, EGRM, ENGR, EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, NANO, CHEM, BIOL, GRAD, LFSC and OVPR.

Recommended course sequence/plan of study

What follows is the recommended plan of study for students interested in the accelerated program beginning in the fall of the junior year prior to admission to the accelerated program in the senior year.

For students pursuing the non-thesis option

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Pro Time)	ject
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider BME course for accelerated	6
Other required B.S. o	course work	7
Term Hours:		16
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	oject
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider BME course for accelerated	6
Other required B.S. o	course work	7
Term Hours:		16
Fifth year		
Fall semester		
EGMN 605	Mechanical and Nuclear Engineering Analysis	3
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	3

EGMN 610	Topics in Nuclear Engineering	3
Term Hours:		9
Spring semester		
EGRM, ENGR, EGRN,	Select 600-leve courses from: EGMN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, GRAD, LFSC and OVPR)	6
EGMN, EGRM, ENGR,	elect 500- or 600-leve course from: EGRN, EGRB, EGRE, CLSE, CMSC, PHYS, BIOL, GRAD, LFSC and OVPR)	3
Term Hours:		9

For students pursuing the thesis option

Course	Title	Hours
Senior year		
Fall semester		
EGRE 404	Senior Design Studio I (Laboratory/ Project Time)	2
or EGRE 406	Senior Design Studio I - VIP (Laboratory/Pro Time)	ject
ENGR 402	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider BME course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Spring semester		
EGRE 405	Senior Design Studio II (Laboratory/ Project Time)	2
or EGRE 407	Senior Design Studio II - VIP (Laboratory/Pro Time)	oject
ENGR 403	Senior Design Studio (Seminar)	1
Technical elective (c pathway)	onsider BME course for accelerated	6
Other required B.S. c	ourse work	7
Term Hours:		16
Fifth year		
Fall semester		
EGMN 605	Mechanical and Nuclear Engineering Analysis	3
EGMN 606	Mechanical and Nuclear Engineering Continuum Mechanics	3
EGMN 610	Topics in Nuclear Engineering	3
Term Hours:		9
Spring semester		
EGMN 697	Directed Research in Mechanical and Nuclear Engineering	6
EGRM, ENGR, EGRN,	Select 600-leve courses from: EGMN, EGRB, EGRE, CLSE, CMSC, PHYS, MATH, GRAD, LFSC and OVPR)	3
Term Hours:		9