CENTER FOR THE STUDY OF BIOLOGICAL COMPLEXITY

Gregory A. Buck, Ph.D.
Director

csbc.vcu.edu (http://csbc.vcu.edu)

The Center for the Study of Biological Complexity is a multidisciplinary focus of research and scholarly activity within VCU Life Sciences. The mission of the center is to apply the principles of complexity to contemporary biological problems in all aspects of research and scholarly activity, supporting research in integrative molecular, cellular and developmental biology.

- Bioinformatics, Bachelor of Science (B.S.) with a concentration in biological/genomic sciences (http://bulletin.vcu.edu/undergraduate/vcu-life-sciences/center-study-biological-complexity/bioinformatics-bs-concentration-biological-genomic)
- Bioinformatics, Bachelor of Science (B.S.) with a concentration in computational sciences (http://bulletin.vcu.edu/undergraduate/vcu-life-sciences/center-study-biological-complexity/bioinformatics-bs-concentration-computational)
- Bioinformatics, Bachelor of Science (B.S.) with a concentration in quantitative/statistical sciences (http://bulletin.vcu.edu/undergraduate/vcu-life-sciences/center-study-biological-complexity/bioinformatics-bs-concentration-quantitative-statistical)
- Bioinformatics, accelerated bachelor’s to master’s (http://bulletin.vcu.edu/undergraduate/vcu-life-sciences/center-study-biological-complexity/bioinformatics-accelerated-bachelors-masters)
- Bioinformatics (BNFO) (p. 1)
- Life sciences (LFSO) (p. 2)

Bioinformatics

BNFO 201. Computing Skills and Concepts for Bioinformatics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: MATH 151 or 200 with a minimum grade of C, or satisfactory score on the VCU Mathematics Placement Test within the one-year period immediately preceding the beginning of the course. An introduction to computation in bioinformatics, including basics of data representation, and computer organization, as well as programming in Python or other appropriate scripting language. Bioinformatics applications in the literature will be discussed. Guest speakers will share bioinformatics career experiences and opportunities.

BNFO 251. Phage Discovery I. 2 Hours.
Semester course; 4 laboratory hours. 2 credits. Corequisite: BIOL 151 or 152. An exploratory laboratory where students will purify phage from soil, visualize phage using electron microscopy and isolate genomic material for nucleic acid sequencing. Registration by override only. Crosslisted as: LFSC 251.

BNFO 252. Phage Discovery II. 2 Hours.
Semester course; 4 laboratory hours. 2 credits. Corequisite: BIOL 151 or 152. An exploratory laboratory where students will learn about the genomes of viruses infecting bacteria. Students will be given the genome sequence of a novel virus, which will be the basis for a series of computer-based analyses to understand the biology of the virus and to compare it with other viruses that infect the same host. Registration by override only. Crosslisted as: LFSC 252.

BNFO 292. Independent Study. 1-2 Hours.
Semester course; variable hours. 1-2 credits. May be repeated for a maximum total of 6 credits. Prerequisite: permission of instructor. A course designed to provide an opportunity for independent readings of the bioinformatics literature under supervision of a staff member.

BNFO 300. Molecular Biology Through Discovery. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The course aims to expand students’ “ignorance,” a prerequisite for success in science, by confronting them with the interface between the known and the unknown, stressing the process by which the boundary is traversed. It will do so using as the raw material the study of molecular biology, an essential groundwork for bioinformatics.

BNFO 301. Introduction to Bioinformatics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: BNFO 201 and BNFO 300 or permission of instructor. The course will present a practical and theoretical introduction to the tools and techniques needed to obtain and interpret a variety of genome-related data types. The course will include several bioinformatic methods underlying nucleotide and protein sequence alignment, statistical methods for data visualization in R, the types of experimental results commonly encountered in bioinformatics data analysis and the public databases where these data can be accessed. Crosslisted as: BIOL 351.

BNFO 380. Introduction to Mathematical Biology. 4 Hours.
Semester course; 3 lecture and 2 laboratory hours. 4 credits. Prerequisites: MATH 200 and BIOL 151, or permission of instructor. An introduction to mathematical biology. Various mathematical modeling tools will be covered and implemented in a range of biological areas. Additionally, the collaborative research process will be presented and discussed. Crosslisted as: MATH 380/BIOL 380.

BNFO 420. Applications in Bioinformatics. 3 Hours.
Semester course; 2 lecture and 2 laboratory hours. 3 credits. Prerequisites: CMSC 245 or 255 and BNFO 301. Capstone course. Students will integrate biological, computational and quantitative skills to complete bioinformatics projects in a professional team-problem-solving context. Course includes explicit instruction in the conduct of research as well as a review of applicable strategies, methods and technologies. Written and oral presentation is emphasized, with systematic feedback and practice opportunities provided.

BNFO 440. Computational Methods in Bioinformatics. 3 Hours.
Semester course; 2 lecture and 2 laboratory hours. 3 credits. Prerequisites: CMSC 255 and 256; BNFO 301, or permission of instructor. An introduction to mathematical and computational methods in bioinformatics analysis. Topics include but are not limited to operating systems, interfaces, languages, SQL, search algorithms, string manipulation, gene sequencing, simulation and modeling, and pattern recognition. Students will be exposed to Maple, Matlab, SPSS, E-cell, BioPerl, Epigram and C as part of the requirements of this course.

BNFO 491. Special Topics in Bioinformatics. 1-4 Hours.
Semester course; variable hours. 1-4 credits. Prerequisites; permission of instructor and adviser. An introductory, detailed study of a selected topic in bioinformatics unavailable as an existing course. Students will find specific topics and prerequisites for each special topics course listed in the Schedule of Classes. If multiple topics are offered, students may elect to take more than one. Adviser’s approval is required for counting each special topics course toward meeting specific requirements of the B.S. program.
BNFO 492. Independent Study. 1-4 Hours.
Semester course; variable hours. A minimum of three hours of supervised activity per week per credit is required. 1-4 credits. May be repeated for a maximum total of 6 credits. Prerequisite: BIOL 218. Projects should include data collection and analysis, learning bioinformatics-related research techniques, and mastering experimental procedures, all under the direct supervision of a faculty member. A final report must be submitted at the completion of the project. Graded as pass/fail.

BNFO 496. Undergraduate Teaching Assistantship in Bioinformatics. 1-2 Hours.
Semester course; variable hours. 1-2 credits. May be repeated for a maximum total of 2 credits. Prerequisites: permission of instructor and a minimum grade of B in the course the student will TA. Student will work with course instructor to implement course objectives. Typical duties involve media preparation, answering questions, providing feedback on course assignments and peer mentoring. Provides exposure to the practice, possibilities, rewards and responsibilities of the act of teaching.

BNFO 497. Research and Thesis. 1-4 Hours.
Semester course; variable hours. A minimum of three hours of supervised activity per week per credit is required. 1-4 credits. May be repeated for a maximum total of 6 credits. Prerequisites: BIOL 218, junior or senior status. Projects should include data collection and analysis, learning bioinformatics-related research techniques, and mastering experimental procedures, all under the direct supervision of a faculty member. A written thesis of substantial quality is required at the completion of the research.

Life Sciences

LFSC 101. Academic and Career Options in Life Sciences. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Students interested in the life sciences at VCU are faced with an enormous variety of academic options from bioinformatics and biomedical engineering to exercise science and nursing. Students outside of these programs have post-graduate opportunities in the life sciences, such as health care administration and government policy. This course will introduce students to an overview of all of the academic programs in life sciences available at VCU and their associated potential career options. Graded as pass/fail.

LFSC 251. Phage Discovery I. 2 Hours.
Semester course; 4 laboratory hours. 2 credits. Corequisite: BIOL 151 or 152. An exploratory laboratory where students will purify phage from soil, visualize phage using electron microscopy and isolate genomic material for nucleic acid sequencing. Registration by override only. Crosslisted as: BNFO 251.

LFSC 252. Phage Discovery II. 2 Hours.
Semester course; 4 laboratory hours. 2 credits. Corequisite: BIOL 151 or 152. An exploratory laboratory where students will learn about the genomes of viruses infecting bacteria. Students will be given the genome sequence of a novel virus, which will be the basis for a series of computer-based analyses to understand the biology of the virus and to compare it with other viruses that infect the same host. Registration by override only. Crosslisted as: BNFO 252.

LFSC 301. Integrative Life Sciences Research. 3 Hours.
Semester course; 2 lecture and 1 recitation hours. 3 credits. Pre- or corequisite: UNIV 200 or HONR 200. Students will leave this course knowing enough about science and the process of science to feel confident in critically evaluating scientific information and/or embarking on their own process of discovery with a faculty mentor. They will gain an appreciation of the interdisciplinary and complex nature of life sciences and will hone their critical thinking about how science interacts with and informs society.