MECHANICAL AND NUCLEAR
ENGINEERING (EGMN)

EGMN 102. Engineering Statics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: MATH 200 with a minimum grade of C or permission of instructor. Corequisite: PHYS 207 or permission of instructor. The theory and application of engineering mechanics applied to the design and analysis of rigid structures. Equilibrium of two- and three-dimensional bodies. The study of forces and their effects. Applications to engineering systems.

EGMN 103. Mechanical and Nuclear Engineering Practicum I. 1 Hour.
Semester course; 3 laboratory hours. 1 credit. Students will perform a sequence of laboratory modules designed to provide practical hands-on exposure to important topics, equipment and experimental methods in mechanical and nuclear engineering. Topics covered include communication, optimization, reverse engineering, mechanics, thermodynamics and electric circuits.

EGMN 110. Engineering Visualization. 2 Hours.
Semester course; 1 lecture and 2 laboratory hours. 2 credits. Enrollment is restricted to mechanical engineering majors or with permission of the instructor. The creation and interpretation of graphical communication for engineering students. Two- and three-dimensional part assembly representation. Dimensioning and tolerancing as a link between design and manufacturing. An introduction to solid modeling and virtual prototyping. The course will impart proficiency in computer-aided design applications of fundamental and practical importance to engineering students.

EGMN 111. Great Inventions: How They Work and Their Impact on Society. 3 Hours.
Semester course; 3 lecture hours. 3 credits. This course explores how creativity and innovation have led to a broad range of significant engineering inventions in areas such as engines, mechanical flight and rockets, electrification, engineering materials, mass production, industrial agriculture, computers, telecommunications, medical devices, refrigeration, and clean and sustainable energy, including nuclear energy. The course discusses the historical context for each invention, how the invention works and the impact of the invention on society.

EGMN 190. Introduction to Mechanical and Nuclear Engineering. 1 Hour.
Semester course; 1 lecture hour. 1 credit. The course will introduce students to the engineering profession, present basic mechanical and nuclear engineering concepts and include seminars presented by alumni, industry and experts in their fields.

EGMN 201. Dynamics and Kinematics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 207, EGMN 102 and MATH 201, with a minimum grade of C in each, or permission of the instructor. Kinematics and kinetics of particles. Kinematics of rigid bodies; translation and fixed-axis rotation relative to translating axes, general planar motion, fixed-point rotation and general motion. Kinetics of rigid bodies: center of mass, mass moment of inertia, product of inertia, principal-axes, paralleleaxes theorems. Planar motion, work-energy method. Design of cams, gears and linkages.

EGMN 202. Mechanics of Deformables. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 102 and MATH 201, with a minimum grade of C in both, or permission of the instructor. An introductory course covering the mechanics of deformable solids. Subjects include stress, strain, constitutive relations; bending of beams; torsion; shearing; deflection of beams; column buckling; fatigue; failure theory; analysis and design of bar-type members.

EGMN 203. Mechanical and Nuclear Engineering Practicum. 1 Hour.
Semester course; 3 laboratory hours. 1 credit. Students will perform a sequence of laboratory modules designed to provide practical hands-on exposure to important topics, equipment and experimental methods in mechanical and nuclear engineering. Topics covered include additive manufacturing, radiation detection and measurement, radiation shielding, data acquisition and computer interfacing, coding for instrumentation control.

EGMN 204. Thermodynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 207 and MATH 201 with a minimum grade of C in both, or permission of the instructor. Fundamental concepts of thermodynamics; first and second law of thermodynamics; entropy and equilibrium; equations of state; properties of pure fluids; molecular interpretation of thermodynamic properties; phase equilibria; work and heat; power cycles; chemical reactions.

EGMN 210. Computational Methods. 2 Hours.
Semester course; 1 lecture and 2 laboratory hours. 2 credits. Prerequisite: MATH 200 with a minimum grade of C. Enrollment is restricted to mechanical engineering majors or with permission of the instructor. This course focuses on engineering problem-solving skills using computational methods, including Excel and MATLAB programming. Topics include analytical and algorithmic solutions, data representation, pseudocodes, loops and logical branching, plotting data, finding the roots of equations, matrix mathematics, and solving simultaneous equations.

EGMN 215. Engineering Visualization and Computation. 3 Hours.
Semester course; 2 lecture and 2 laboratory hours. 3 credits. Enrollment restricted to mechanical engineering majors or with permission of the instructor. Programming in Excel and MATLAB will be introduced. The creation and interpretation of graphical communication for engineering students. Two- and three-dimensional part assembly representations. Dimensioning and tolerancing as a link between design and manufacturing. An introduction to solid modeling and virtual prototyping. The course will impart proficiency in computer and graphical applications of fundamental and practical importance to engineering students.

EGMN 300. Mechanical Systems Design. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 201 and EGMN 202, with a minimum grade of C in both, or permission of the instructor. Basic principles of applied mechanics and materials employed for the design of machine elements and mechanical systems; state of stress, deformation and failure criterion is applied to bearings, brakes, clutches, belt drives, gears, chains, springs, gear trains, power screws and transmissions.
EGMN 301. Fluid Mechanics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: PHYS 207 and EGMN 204, with a minimum grade of C in each, or permission of instructor. Corequisite: MATH 301 or permission of instructor. Basic and applied fluid mechanics; fluid properties; application of Bernoulli and Navier-Stokes equations; macroscopic mass, momentum and energy balances; dimensional analysis; laminar and turbulent flow; boundary layer theory; friction factors in pipes and packed beds; drag coefficients; compressible flow; flow measurements; numerical simulation; applications to the operation and design of turbo machinery.

EGMN 302. Heat Transfer. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 204 and EGMN 301, MATH 301 and MATH 307, with a minimum grade of C in each, or permission of instructor. This course includes an overview of the basic modes of heat transfer: conduction, convection and radiation. It provides an in-depth discussion of transient and steady-state heat conduction in one-, two- and three-dimensional space, and both analytical and numerical approaches are discussed. Additional concepts include free and forced convection in external and internal flow configurations.

EGMN 303. Thermal Systems Design. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 301, EGMN 204 and EGMN 301, with a minimum grade of C in each, or permission of the instructor. Fundamentals of heat transfer, thermodynamics and fluid mechanics applied to the analysis, design, selection and application of energy conversion systems.

EGMN 305. Sensors/Measurements. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 301 with a minimum grade of C or permission of instructor. Introduction to sensors and their utilization for measurement and control; sensor types: electromechanical, electro-optical, electrochemical; applications in medicine, chemical manufacturing, mechanical control and optical inspection.

EGMN 309. Material Science for Engineers. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: CHEM 101 or permission of instructor. The study of materials from a microscopic or atomic level. Consideration of mechanical, electrical, thermal, magnetic and optical properties of metals, ceramics, polymers and composites. Thermal processing for modification of properties, dislocation and phase transformation. Material selection for design with consideration of economic, environmental and societal issues.

EGMN 311. Solid Mechanics Lab. 1.5 Hour.
Semester course; 0.5 lecture and 3 laboratory hours. 1.5 credits. Prerequisites: EGMN 201 and EGMN 202, both with a minimum grade of C, or permission of the instructor. Corequisite: UNIV 200 or HONR 200. Experiments will be conducted on fundamental principles of solid mechanics, materials and dynamics. Topics covered include testing of materials for tensile, compression, bending and torsional loads, vibrations and material microstructure.

EGMN 312. Thermal Sciences Lab. 1.5 Hour.
Semester course; 0.5 lecture and 3 laboratory hours. 1.5 credits. Prerequisites: EGMN 301; and UNIV 200 or HONR 200, each with a minimum grade of C, or permission of the instructor. Experiments will be conducted on fundamental principles of fluid mechanics, thermodynamics and heat transfer. Topics covered include hydrostatics, Bernoulli equation, impact jets, aerodynamic force, heat pump thermodynamics cycles, heat exchangers and convection heat transfer.

EGMN 315. Process and Systems Dynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 301, EGRE 206, EGMN 201 and PHYS 207, all with a minimum grade of C; or permission of instructor. Undergraduate course covering the analysis of chemical, fluid, mechanical and electrical dynamic systems. Pedagogically, a single approach is taught that applies to any of the systems in any of these disciplines using conservation equations and constitutive relationships to build the systems of differential equations needed for the analysis. The mathematical structures of the types of differential equations typically generated in dynamic physical systems are reviewed and both analytical and numerical solution techniques are taught. Finally, the tools used to develop control components for systems in these areas are covered along with the mathematical tools (e.g., Laplace transforms) needed for their analysis.

EGMN 321. Numerical Methods. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 301; and EGMN 215 or EGMN 210, all with minimum grades of C, or permission of instructor. A study of numerical algorithms used in error analysis, computing roots of equations, solving linear algebraic equations, curve fitting, numerical differentiation and integration, numerical methods for ordinary differential equations and a brief introduction to numerical methods for partial differential equations. The course content is tailored for mechanical engineering applications.

EGMN 351. Nuclear Engineering Fundamentals. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Restricted to mechanical engineering majors. Prerequisite: MATH 200 with a minimum grade of C or permission of the instructor. An introductory course to familiarize students with the concepts, systems and application of nuclear energy. Topics include radioactivity, fission, fusion, reactor concepts, biological effects of radiation, nuclear propulsion and radioactive waste disposal. Designed to provide students with a broad perspective of nuclear engineering.

EGMN 352. Nuclear Reactor Theory. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 301; and EGMN 359 or EGMN 455 with a minimum grade of C; or permission of instructor. This course introduces the fundamental properties of the neutron, the reactions induced by neutrons, nuclear fission, the slowing down of neutrons in infinite and finite media, diffusion theory, the 1-group or 2-group approximation, point kinetics, and fission-product poisoning. Provides students with the nuclear reactor theory foundation necessary for reactor design and reactor engineering problems.

EGMN 355. Radiation Safety and Shielding. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: EGMN 351 with a minimum grade of C, or permission of instructor. Fundamentals of radiation safety and shielding with focus on sources of radioactivity, interaction of radiation with matter, biological effects of radiation, dosimetry, attenuation of gamma rays and neutrons and effectiveness of shielding methods.

EGMN 356. Nuclear Instrumentation and Measurements. 3 Hours.
Semester course; 6 laboratory hours. 3 credits. Prerequisite: EGMN 355 with a minimum grade of C or permission of instructor. Provides an in-depth study of radiation detection systems. Students will understand both the practical operation of detection systems as well as the physical processes involved in radiation detection, attenuation and shielding.
EGMN 359. Nuclear Power Plants. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGMN 351 with a minimum grade of C. Corequisite: EGMN 204 or permission of instructor. Design and analysis of nuclear power plants – both existing and planned. Topics include survey of reactor types and common design characteristics; the conversion of thermal energy to electricity; the control and operation of nuclear reactors through an analysis of the coupling of the reactors and the power plant; reactor transient analysis; and nuclear safety design.

EGMN 401. Mechanical Engineering Leadership. 3 Hours.
Semester course; 9 laboratory hours. 3 credits. Enrollment restricted to students with junior or senior standing in mechanical engineering and permission of the instructor. Senior/junior students will serve as lab teaching assistants in EGMN 110, EGMN 203, EGMN 210, EGMN 311 or EGMN 312. Leadership skills will be honed as the senior/junior students guide, lead and supervise other students as they complete hands-on learning modules and/or design, conduct, analyze and report on experiments in one of these lab courses.

EGMN 402. Senior Design Studio (Laboratory/Project Time). 2 Hours.
Semester course; 6 laboratory hours. 2 credits. Prerequisite: UNIV 200 or HONR 200; EGMN 300 or EGMN 303; EGMN 420; and four courses from EGMN 300, EGMN 301, EGMN 302, EGMN 303, EGMN 315, EGMN 321, EGMN 352, EGMN 355, EGMN 416 and EGMN 421. All prerequisite courses must be completed with minimum grades of C. Enrollment is restricted to students with senior standing participating in a senior design (capstone) project. A minimum of six laboratory hours per week dedicated to the execution phase of the senior design (capstone) project, which should meet appropriate engineering standards and multiple realistic constraints. Tasks include team meetings, brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects.

EGMN 403. Senior Design Studio (Laboratory/Project Time). 2 Hours.
Continuous course; 6 laboratory hours. 2 credits. Prerequisite: senior standing and participation in a senior design (capstone) project; EGMN 402. A minimum of six laboratory hours per week dedicated to continuing the execution phase of the senior design (capstone) project, which should meet appropriate engineering standards and multiple realistic constraints. Tasks include team meetings, brainstorming, sponsor advising, designing, fabrications, assembling, reviewing, studying, researching, testing and validating projects.

EGMN 416. Mechatronics. 3 Hours.
Semester course; 2 lecture and 3 laboratory hours. 3 credits. Prerequisite: EGRE 206 with a minimum grade of C, or permission of instructor. Lecture materials and laboratory experiments focus on the fundamentals of design-oriented mechanical, electrical and computer systems integration. Specifically, students learn analog and digital electronic design, data acquisition, transducers, actuator technologies and control, design with microprocessors and embedded electronics, and application of control theory.

EGMN 418. HVAC: Heating, Ventilation and Air Conditioning. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 301, EGMN 302 and EGMN 303. Introduction to the fundamentals of HVAC systems, including basic terminology, psychometrics, HVAC system components, types of HVAC systems for various building requirements, physiological considerations and environmental indices, control of thermal comfort and indoor air quality, heat gain or loss in spaces to be conditioned, basic heating and cooling load calculations.

EGMN 420. CAE Design. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 201 and either EGMN 215 or both EGMN 110 and EGMN 210, all with minimum grades of C, or permission of the instructor. Review of geometric modeling, engineering visualization tools applicable to engineering design. Develop visual thinking and communication skills with assistance of computer modeling tools. Emphasis placed on creative design, application of physical laws, and hands-on virtual or physical projects. Topics include review of kinematics/dynamics of commonly used planar mechanisms and programming techniques for motion simulation. Interdisciplinary projects will be assigned to assess students' design knowledge.

EGMN 421. CAE Analysis. 3 Hours.
Semester course; 2 lecture and 2 laboratory hours. 3 credits. Prerequisites: EGMN 202, either EGMN 215 or both EGMN 110 and EGMN 210; and MATH 301 and MATH 307, all with minimum grades of C, or permission of the instructor. Application of computer-aided techniques to the analysis of engineering problems utilizing linear algebra, computer calculations of matrices and numerical solution of governing differential equilibrium equations common to all fields of engineering. Students will be exposed to formulations of finite element methods of analysis. Emphasis is placed on practical aspects of structural FE modeling. Analysis programs such as ANSYS, MSC/PATRAN, MSC/NASTRAN and/or MATLAB are utilized.

EGMN 422. Design and Additive Manufacturing. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 420 or permission of the instructor. Design and additive manufacturing is the use of layer-based processes for producing parts directly from computer-aided design models without part-specific tooling. In this course students will learn about various AM technologies focusing upon their potential to support rapid prototyping and manufacturing processes coupled with the important research challenges associated with AM. This course will expand students' knowledge in design and applied engineering as they model, fabricate, test, discuss and iterate upon mechanical 3D objects they design throughout the semester.

EGMN 425. Introduction to Manufacturing Systems. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior standing in the School of Engineering or permission of the instructor. Basic principles of systems analysis and modeling applied to manufacturing processes and operations; numerical control, programmable controllers, flexible manufacturing systems, group technology, process planning and control, modeling and simulation of factory operations.

EGMN 426. Manufacturing Processes. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior standing in the School of Engineering or permission of the instructor. Introduction to the operation and design of metal fabrication processes; analysis of metal casting, extrusion, rolling, forging, wire and rod drawing; review of metal removal and joining methods; economic and business considerations.

EGMN 427. Robotics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior standing in the School of Engineering or permission of the instructor. Introduction to the state-of-the-art and technology of robotics and its applications for productivity gain in industry.
EGMN 428. Polymer Processing. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: ENGR 301 and 302, with a minimum grade of C in both, or permission of the instructor. Basic principles of momentum and heat transfer applied to the analysis of polymer processing operations; introduction to polymer rheology; operation and design aspects of extruders, blown film, injection molding, thermoforming and compression molding machinery.

EGMN 435. Design for Manufacturing and Assembly. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior standing in the School of Engineering or permission of the instructor. Methodologies used in the synthesis and analysis of product design in order to optimize manufacturing and assembly; relationship of design to the production processes, materials handling, assembly, finishing, quality and costs with emphasis on both formed and assembled products.

EGMN 436. Engineering Materials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior standing in the School of Engineering or permission of the instructor. Materials properties and their modification as related to engineering properties and design; elastic and plastic stress-strain behavior of materials along with diffusion in solids, phase equilibria, and phase transformations; materials selection considerations include design, fabrication, mechanical failure, corrosion, service stability as well as compatibility and function in the human body.

EGMN 437. Principles of Polymer Engineering. 3 Hours.
Semester course; 3 lecture and 1 laboratory hours. 3 credits. Prerequisites: EGMN 202 with a minimum grade of C, or permission of the instructor. Basic principles of mechanics applied to the mechanical design and fabrication of polymers; introduction to polymer structure, rubber elasticity, and viscoelasticity; mechanical properties, plastic part design and plastic materials selection; fabrication processes.

EGMN 450. Nuclear Reactor Control and Dynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: MATH 301, EGMN 201 and EGMN 455, with a minimum grade of C in each, or permission of instructor. An introduction to control theory and its applications for nuclear engineering students. Modeling and development of differential equations for nuclear systems. Analysis of nuclear reactor dynamics in the time and frequency domains. Application of feedback control techniques to reactor operation, stability and performance.

EGMN 451. Nuclear Safety and Security. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGMN 455 with a minimum grade of C, or permission of the instructor. A study of technological risks and security issues related to nuclear power. Analysis of nuclear reactor system components and operational features that are relevant to safety; reactor containment; safety analysis of nuclear power plants using deterministic and probabilistic models; methods for human, environmental and ecological risk assessment; NRC regulations and procedures; safeguarding against natural (earthquake, tornadoes) and human (domestic and international) threats; classification and consequences of accidents including historical case studies.

EGMN 453. Economics of Nuclear Power Production. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGMN 359 or EGMN 455 with a minimum grade of C, or permission of instructor. Fundamentals of engineering economic analysis are applied to energy supply, demand, prices and production with specific emphasis on nuclear energy, the capital cost of nuclear power plants, the nuclear fuel cycle and associated energy technologies.

EGMN 455. Nuclear Power Plants. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 204 and EGMN 352, each with a minimum grade of C, or permission of instructor. Design and analysis of nuclear power plants. Review of thermodynamic cycles and reactor types; analysis of the coupling of the reactor and the power plant; thermal and mechanical design of steam turbines; turbogenerators; auxiliary systems; design synthesis and heat balance calculations; operation of nuclear reactors.

EGMN 456. Reactor Design and Systems. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 302, EGMN 303 and EGMN 352; and EGMN 359 or EGMN 455, all with a minimum grade of C; or permission of instructor. Engineering principles of nuclear reactors, emphasizing power reactors. Specific topics include power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural mechanics. The course also covers engineering considerations in reactor design.

EGMN 491. Special Topics in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. May be repeated with different content. Prerequisite: determined by the instructor. Specialized topics in engineering designed to provide a topic not covered by an existing course or program. General engineering or multidisciplinary. See the Schedule of Classes for specific topics to be offered each semester and prerequisites.

EGMN 492. Independent Study in Engineering. 1-5 Hours.
Semester course; variable hours. 1-5 credits. May be repeated with different content. Enrollment requires permission of the instructor. Students must submit a written proposal to be approved by the supervising instructor prior to registration. Investigation of specialized engineering problems that are multidisciplinary or of general interest through literature search, mathematical analysis, computer simulation and/or laboratory experimentation. Written and oral progress reports as well as a final report and presentation are required.

EGMN 501. Advanced Manufacturing Systems. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 425 and EGMN 426, graduate standing in the School of Engineering, or permission of instructor. Studies the fundamental systems required for mechanical, chemical and electrical manufacturing, including material procurement, logistics, quality and distribution. The principles are applied to all types of manufacturing processes from project through continuous. Advanced systems for lean, agile and global manufacturing also are covered.

EGMN 502. Product Design and Development. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior or graduate standing in the School of Engineering, or permission of instructor. Presents engineering concepts and techniques necessary to successfully develop new products and introduce them to the marketplace. Topics include development processes, converting direct customer input to marketing specifications, creating technical specifications, quantifying customer input, using rapid prototyping to reduce development time, design for manufacturability and product certification issues.
EGMN 505. Characterization of Materials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior or graduate standing in the School of Engineering, or permission of instructor. Focuses on characterization techniques of solids at the molecular, surface and bulk levels, including resonant, vibrational and electronic spectroscopies, X-ray methods and optical and electron microscopies. A connection will be developed between the theoretically-derived and experimentally-observed properties of materials and a rationale also will be developed for choosing an appropriate characterization technique for a given material.

EGMN 506. Industrial Hygiene. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with senior or graduate standing in the School of Engineering or by permission of instructor. The course will acquaint students with methods used by industrial hygienists to identify, evaluate and control human exposure to toxic contaminants and harmful physical agents in the workplace and in the environment. Students will develop an understanding of the ethical issues confronting industrial hygienists and other health professionals.

EGMN 507. Law and Engineering. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with senior or graduate standing in the School of Engineering, or by permission of instructor. The course proposes to acquaint the student with legal concepts that affect the engineering community and enable the student to understand how technical and scientific regulations are promulgated and how interest groups attempt to ensure that regulations consider their positions. In addition, the course introduces intellectual property law: patents, copyrights and trademarks.

EGMN 508. Lean Manufacturing. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with senior or graduate standing in the School of Engineering or by permission of instructor. The objective of the class is to introduce lean thinking – defined as a systematic, logical method of identifying and eliminating waste using continuous assessment. The classes focus on managing flow, identifying and eliminating waste, problem-solving, and product and process design.

EGMN 509. Advanced Lean Manufacturing. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with senior or graduate standing in the School of Engineering or by permission of instructor. The course builds on the knowledge gained in lean manufacturing. The class allows the student to use their lean tools in a real manufacturing environment. The course reviews automation, load leveling, distribution, logistics, flow and added work, among many other topics. At the end of the course students will be able to take the Lean Bronze Certificate Test, given by the Society of Manufacturing Engineers.

EGMN 510. Probabilistic Risk Assessment. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with senior or graduate standing in the School of Engineering, or by permission of the instructor. An introduction to probabilistic risk assessment methods as applied to nuclear power plants. Students will receive hands-on experience in PRA methods by designing and building a PRA model for an operational nuclear power plant. Students will use state-of-the-art software to design a nuclear plant model, using event trees, fault trees, industry failure and unavailability data, and current human reliability analysis methods. Using the completed model, students will calculate and use appropriate risk metrics in typical applications.

EGMN 515. Vibrations. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Provides students with vibrations theory and practical applications for machines and structures necessary (a) to perform analysis and evaluation of vibrations problems and (b) to recognize suspicious results from canned computer software. Emphasis placed on the formulation of governing differential equations, solution methods, evaluation of results and interpretation of response characteristics of discrete mass systems and continuous mass systems. Work and energy methods, variational methods, and Lagrange's Equations will be used to formulate problems. Solution methods will use exact and approximate methods, including eigensolution methods. Applications to the vibrations of various mechanical systems will use computational techniques, computer simulation and analysis.

EGMN 518. Advanced HVAC. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or by permission of instructor. The course intends to reinforce the fundamentals of HVAC systems and apply them to research topics. Student will review the basics of HVAC systems; the use of psychrometric charts to deal with various moist-air processes; indoor environment health, thermal comfort and indoor air quality control; heat transmission in building structures; solar irradiation; basic space heating and cooling load calculations; and space air distribution and related equipment.

EGMN 525. Feedback Control. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: experience using MATLAB software; EGMN 315 and EGMN 410, with a minimum grade of C in both; graduate standing in the School of Engineering; or permission of instructor. In-depth study of the fundamentals of feedback control systems theory and design. Topics covered include transfer function modeling, system stability and time response, root locus, Bode and Nyquist diagrams, lead, lag, and PID compensators.

EGMN 530. System Analysis of the Nuclear Fuel Cycle. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGMN 359 or EGMN 455. Enrollment is restricted to graduate students in the College of Engineering if prerequisites have not been met. Provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing, and waste disposal. Also covered are the principles of fuel-cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Nonproliferation aspects, disposal of excess weapons plutonium and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers.

EGMN 545. Energy Conversion Systems. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 204 and EGMN 301, with a minimum grade of C in both; graduate standing in the School of Engineering, or permission of the instructor. Quantitative and qualitative study of traditional and alternative systems used to generate electricity. Topics include combustion, coal-fired boilers, nuclear reactors, steam turbine blading, gas turbine combustors, turbo-generator design, internal combustion engines, solar thermal systems, photovoltaic devices, wind energy, geothermal energy and fuel cells. Additional topics of interest to the students may be discussed.
EGMN 550. Energy and Sustainability. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment requires senior or graduate standing in the School of Engineering or permission of instructor. This course will explore the various available energy resource options and technologies with a focus toward achieving sustainability on a local, national and global scale. The course will examine the broader aspects of energy use, including resource estimation, environmental effects, interactions among energy, water and land use, social impacts, and economic evaluations. Students will review the main energy sources of today and tomorrow, from fossil fuels and nuclear power to biomass, hydropower and solar energy, including discussions on energy carriers and energy storage, transmission, and distribution.

EGMN 551. Experimental Methods for Engineers. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: senior or graduate standing in the School of Engineering or permission of the instructor. An introduction to design of experiments theory, DoE and methods such as six-sigma and factorial experimental design to engineering projects. Provides students with the necessary background to plan, budget and analyze an experiment or project.

EGMN 555. Smart Materials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Covers various smart materials, such as shape memory alloys and piezoelectric and magnetostrictive materials, current research in material development and diverse applications in areas such as medicine, automobiles and aerospace. The aim of the course is to bridge the gap between different areas of material development, characterization, modeling and practical applications of smart materials.

EGMN 560. Monte Carlo Simulations. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment restricted to students with senior or graduate standing in the School of Engineering or by permission of instructor. The course covers key aspects of computer modeling and simulation with the emphasis on statistical resampling and Monte Carlo techniques. Students will complete a number of modeling projects utilizing programming languages commonly used in the nuclear industry. As such the course includes gaining a basic proficiency in the appropriate programming language, including the development of good programming practices.

EGMN 556. Design Optimization. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGRM 420 and 421, with a minimum grade of C in each, graduate standing in the School of Engineering, or permission of instructor. Focuses on providing students with a methodology and set of skills to apply in improving engineering components, systems and processes. The design of better products and processes is a fundamental goal of all engineering.

EGMN 566. Advanced Computer-aided Design and Manufacturing. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: EGMN 420, EGMN 421, EGMN 425 and EGMN 426, with a minimum grade of C in each, graduate standing in the School of Engineering or permission of instructor. Provides students with an understanding of how modern computer techniques can enhance the generation, analysis, synthesis, manufacturing and quality of engineering products. The design and manufacture of better products and processes is a fundamental goal of all engineering disciplines.

EGMN 568. Robot Manipulators. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: graduate standing in the School of Engineering or permission of instructor. Provides students with a basic knowledge in the dynamic analysis and control of robot manipulators. Topics include Jacobian analysis, manipulator dynamics, linear and nonlinear control of manipulators, force control of manipulators, robot manipulator applications and an introduction to telemanipulation.

EGMN 570. Effective Technical Writing. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to juniors, seniors or graduate students in the School of Engineering or with permission of instructor. The course will involve intensive study of different aspects of technical communications. Critical reading and writing skills will be developed particularly for technical essays, targeted for both educated and specialized audience. Nontechnical writing will be used as an inspiration for technical writing. Other aspects of technical communications will also be covered.

EGMN 571. Introduction to Computational Fluid Dynamics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGMN 301 with a minimum grade of C, graduate standing in the School of Engineering or permission of the instructor. Students will become familiar with basic aspects of CFD, including characteristics of the governing equations, finite-difference and finite-volume solution methods, implicit versus explicit solution algorithms, grid generation, and numerical analysis. Emphasis placed on mechanical, chemical and bioengineering systems. The final course project will emphasize issues of current research such as biofluid mechanics, medical devices and MEMS.

EGMN 573. Engineering Acoustics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGMN 301 with a minimum grade of C, graduate standing in the School of Engineering or permission of the instructor. Designed to equip students to perform design work, testing and research in structural acoustics and vibrations. Applications from the fields of automotive, aerospace, marine, architectural, medical equipment and consumer appliance industries will be investigated.

EGMN 574. Nuclear Safeguards, Security and Nonproliferation. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with senior or graduate standing in the School of Engineering or by permission of instructor. This course will explore the political and technological issues involved with nuclear safeguards, security and nonproliferation. Topics studied will include the history of nuclear weapons development, description and effects of weapons of mass destruction, nuclear material safeguards, protection of nuclear materials, proliferation resistance and pathways in the nuclear fuel cycle, international and domestic safeguards, nuclear terrorism, and safeguards measurement techniques for material accountability programs and physical protection mechanisms.

EGMN 575. Fast Breeder Reactors. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with senior or graduate standing in the School of Engineering or by permission of instructor. This course will examine the physical, technical and economic features of fast breeder reactors. In particular, the course will study the need for fast reactors and their design objectives, typical core design principles, and important plant systems. The course will also discuss the major nuclear safety topics and their design approaches.
EGMN 580. Flow Control. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: EGMN 301 with a minimum grade of C, graduate standing in the School of Engineering or permission of instructor. Passive, active and reactive flow management strategies to achieve transition delay/advance, separation control, mixing augmentation, drag reduction, lift enhancement and noise suppression. Unified framework for flow control. Futuristic reactive control methods using MEMS devices, soft computing and dynamical systems theory.

EGMN 591. Special Topics in Engineering. 1-4 Hours.
Semester course; 1-4 variable hours. 1-4 credits. Prerequisite: senior or graduate standing in the School of Engineering, or permission of the instructor. Lectures, tutorial studies, library assignments in selected areas of advanced study or specialized laboratory procedures not available in other courses or as part of research training.

EGMN 602. Convective Heat Transfer. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisites: graduate standing in the School of Engineering, or permission of instructor. In-depth quantitative study of convective heat transfer. Topics include laminar boundary layer flow, laminar duct flow, external natural convection, internal natural convection, transition to turbulence, turbulent boundary layer flow, turbulent duct flow, free turbulent flows, convection with change of phase, convection in porous media.

EGMN 603. Mechanical and Nuclear Engineering Dynamic Systems. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with graduate standing in mechanical and nuclear engineering. This course presents the technical foundation for application and use of dynamic systems and presents methods to formulate the governing differential equations of such systems and to obtain realistic analytical and numerical solutions. The organization of the course presents theory and methods and specific applications for typical dynamic systems.

EGMN 604. Mechanical and Nuclear Engineering Materials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. The course consists of advanced topics in both fundamental and applied materials science including solid state fundamentals, crystal structure, diffraction in crystals, postulates of quantum mechanics, Bloch functions and energy bands, Fermi distributions, classification and processing of materials, alloys and phase diagrams, defects, dislocation dynamics, solid state diffusion, thermal and mechanical properties, corrosion, high temperature deformation mechanisms, basics of fracture mechanics, fundamentals of ionization radiation, irradiation effects on material properties, and materials selection for extreme environment applications.

EGMN 605. Mechanical and Nuclear Engineering Analysis. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with graduate standing in mechanical and nuclear engineering. The course covers advanced topics in applied mathematics most important for solving practical problems in mechanical and nuclear engineering. Topics include Fourier analysis, partial differential equations, boundary value problems, series solutions, complex analysis, conformal mapping, complex analysis and potential theory, applications in fluid mechanics, vibrations, and mechanical and nuclear engineering problems.

EGMN 606. Mechanical and Nuclear Engineering Continuum Mechanics. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with graduate standing in mechanical and nuclear engineering. The topics include scalars, vectors and tensors; indicial notation; transformation law; principal values and directions; tensor fields; integral theorems of Gauss and Stokes; stress; Mohr's circle; strain; kinematics of deformation and motion; rate of deformation; general principles (continuity, momentum, energy); constitutive equations; linear elasticity; Hooke's law; three-dimensional elasticity; classical fluids; Navier-Stokes equations; Bernoulli equation; flow (viscous, steady, irrotational).

EGMN 607. Heat and Mass Transfer Theory and Applications. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in mechanical and nuclear engineering. A solid theoretical and applied understanding of heat and mass transfer is critical for training competent mechanical and nuclear engineers. This course will provide students with a theoretical understanding of the heat transport processes of conduction, convection and radiation as well as an understanding of parallels with mass transfer. Solution techniques will be both analytical and numerical, consistent with problems faced by modern engineers. Applications in the field of mechanical engineering include the design of cooling systems for automobiles, conventional power plants, heat engines and computers. Applications in the field of nuclear engineering include maintaining nuclear core temperatures and nuclear plant heat dissipation. Mass transfer applications include any process involving multiple species (e.g., two gases) as well as medically oriented transport problems (e.g., blood oxygenation), which are frequently encountered when developing materials or medical devices. Specific topics to be covered include 1D conduction, 2D and 3D conduction, transient conduction, external forced convection, internal forced convection, convection with phase change, thermal radiation, and principles of mass transfer (diffusion and advection).

EGMN 608. Solid Mechanics and Materials Behavior. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: graduate standing in the School of Engineering or permission of the instructor. Studies of stresses and strains in two- and three-dimensional elastic problems. Failure theories and yield criteria. Analysis and design of load-carrying members, energy methods and stress concentrations. Elastic and plastic behavior, fatigue and fracture, and composites will be discussed.

EGMN 609. Advanced Characterization of Materials. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Study of the physical properties of a wide range of materials by advanced microscopy techniques including electron and scanning probe-based microscopy. Advanced study of deformation and failure in materials including characterization by hardness, fracture toughness and tensile testing, as well as X-ray diffraction.
EGMN 610. Topics in Nuclear Engineering. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with graduate standing in the School of Engineering or with permission of instructor. A survey covering the scope of nuclear engineering. Concepts of atomic and nuclear structure, mass and energy, nuclear stability, radioactive decay, radioactivity calculations, nuclear reactions, interaction of radiation (neutrons and photons) with matter, fission chain reaction, neutron diffusion, nuclear reaction theory, reactor kinetics, health physics, reactor power plants (PWR and BWR), waste disposal. Required first course for graduate students in nuclear engineering track who enter with degrees in other disciplines; suitable as a technical elective for other graduate engineering tracks.

EGMN 612. Advanced Computational Methods. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Exposes students to the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic, parabolic and hyperparabolic partial differential equations. Topics include equation characteristics; finite difference, finite volume and finite element discretization methods; and direct and iterative solution techniques. Applications to engineering systems are presented, including fluid dynamics, heat transfer and nonlinear solid mechanics.

EGMN 620. Reactor Theory. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with graduate standing in the School of Engineering or with permission of instructor. The neutronics behavior of fission reactors, primarily from a theoretical, one-speed perspective. Criticality, fission product poisoning, reactivity control, reactor stability and introductory concepts in fuel management, followed by slowing-down and one-speed diffusion theory.

EGMN 625. Advanced Modeling and Simulations. 3 Hours.
Semester course; 3 lecture hours (delivered online, face-to-face or hybrid). 3 credits. Enrollment is restricted to students with graduate standing in the School of Engineering or by permission of instructor. Use of finite element method to solve applied engineering problems at an advanced level. Special focus will be largely on solid mechanics and, to a lesser degree, on thermal problems. Topics to be covered include, but are not limited to, material and geometric nonlinearities, contact problems, dynamic problems and application of constraint equations. Commercially available finite element method software ANSYS will be utilized. Students will learn how to use ANSYS at an advanced level through utilizing commands and basic programming features.

EGMN 627. Advanced Manufacturing Simulations. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Advanced mechanics of the manufacturing processes, their modeling and simulation. Fundamentals of process modeling and use of computational tools. Details and governing theory behind the construction of numerical analysis tools such as FEA will not be provided. However, the intelligent use of this kind of FEA tool in the solution of industrial problems will be taught in addition to analytical methods in rapid assessment of manufacturing processes and systems.

EGMN 630. Technology, Security and Preparedness. 3 Hours.
Semester course; 3 lecture hours. 3 credits. An overview of the role of technology in detecting and defeating terrorism. The course begins with a detailed review of weapons of mass destruction including chemical, biological and radiological devices. This is followed by a review of the various technologies currently being developed and deployed to detect the presence of terrorist weapons and associated activities. These technologies include chemical sensors, biosensors and radiation detectors, portal monitors, satellite and infrared imaging systems, as well as acoustic sensors and magnetometers.

EGMN 640. Nuclear Safety. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Nuclear safety, its role in the design and operation of nuclear power plants, and the prevention of nuclear accidents. Topics include reactor safety, reactor core design, steam generation, Rankine and Brayton cycles, reactor heat balance, reactor protection systems, reactor core analysis, and safety-related issues.

EGMN 645. Nuclear Radiation and Shielding. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Basic principles of nuclear radiation and shielding, including source strength, attenuation, and shielding design. Topics include gamma ray and neutron shielding, geometry factors in shielding, computational techniques, and special topics such as shield heating, duct steaming and albedo theory.

EGMN 650. Nuclear Power Plants. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Descriptions of mechanical features (containment, core design, steam generation, Rankine and Brayton cycles) of PWR and BWR power plants. Reactor core heat generation. Thermal analysis of fuel pins, fuel elements, flow channels and reactor core. Single- and two-phase heat transfer. Single- and two-phase fluid mechanics. Steady-state and unsteady-state thermodynamic analysis.

EGMN 655. Nuclear Power Plants. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Descriptions of mechanical features (containment, core design, steam generation, Rankine and Brayton cycles) of PWR and BWR power plants. Reactor core heat generation. Thermal analysis of fuel pins, fuel elements, flow channels and reactor core. Single- and two-phase heat transfer. Single- and two-phase fluid mechanics. Steady-state and unsteady-state thermodynamic analysis.

EGMN 660. Advanced Turbomachinery Systems. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Designed to introduce graduate students to the fundamentals and the theoretical underpinnings of viscous fluid flows. An extensive project will be included as part of this class.
EGMN 664. Advanced Fluid Mechanics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Prerequisite: graduate standing in the School of Engineering or permission of instructor. Covers the principles necessary to analyze viscous flow. Students learn how to formulate solutions to general viscous flow problems.

EGMN 665. Advanced Biofluid Mechanics. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. Emphasizes the application of fluid mechanics to understand the properties of biological materials pertaining to the human body. This objective will be achieved through the application of fundamental laws (mass, momentum and energy) that govern fluid mechanics. Emphasis will be on respiratory flow dynamics, biofluid measurement techniques, steady and unsteady blood flow, flow through biodevices, turbulence, and mass transport with physiologic boundary conditions.

EGMN 680. Advanced Flow Control. 3 Hours.
Semester course; 3 lecture hours. 3 credits. Enrollment restricted to students with graduate standing in the School of Engineering or with permission of instructor. In-depth passive, active and reactive flow-management strategies to achieve transition delay/advance, separation control, mixing augmentation, drag reduction, lift enhancement and noise suppression. Unified framework and theoretical underpinnings of flow control. Futuristic reactive control methods using MEMS devices, soft computing and dynamical systems theory. An extensive project will be included as part of this class. Not open to undergraduate students. Mechanical engineering students may use EGRM 580 or EGRM 680 (but not both) to meet the requirements for the M.S. and/or Ph.D. degrees. Students cannot receive credit for both EGRM 580 and EGRM 680.

EGMN 690. Mechanical and Nuclear Engineering Seminar. 1 Hour.
Semester course; 1 lecture hour. 1 credit. Enrollment restricted to students with graduate standing. Mechanical engineering graduate students will attend a weekly one-hour research seminar. The topic and speaker will change each week in order to cover a broad range of subjects at the forefront of mechanical engineering research. The objective is to expose students to research topics and scholars in the field of mechanical engineering. Graded as satisfactory/unsatisfactory.

EGMN 691. Special Topics in Engineering. 1-4 Hours.
Semester course; 1-4 lecture hours. 1-4 credits. An advanced study of selected topic(s) in engineering. See the Schedule of Classes for specific topics to be offered each semester.

EGMN 692. Independent Study. 1-3 Hours.
Semester course; 1-3 lecture and 1-3 laboratory hours. 1-3 credits. Prerequisites: graduate standing and consent of instructor. The student must identify a faculty member willing to supervise the course and submit a proposal for approval to the appropriate track's graduate committee. Investigation of specialized engineering problems through literature search, mathematical analysis, computer simulation and/or experimentation. Written and oral reports, final report and examination are required.

EGMN 697. Directed Research in Mechanical and Nuclear Engineering. 1-15 Hours.
Semester course; variable hours. 1-15 credits. Prerequisite: graduate standing or permission of instructor. Research directed toward completion of the requirements for the M.S. or Ph.D. in Mechanical Engineering, under the direction of a mechanical engineering faculty member and advisory committee. Graded S/U/F.