This is the preliminary (or launch) version of the 2024-2025 VCU Bulletin. We may add courses that expose our students to cutting-edge content and transformative learning. We may also add content to the general education program that focuses on racial literacy and a racial literacy graduation requirement, and may receive notification of additional program approvals after the launch. The final edition and full PDF version will include these updates and will be available in August prior to the beginning of the fall semester.

Biomedical engineering applies engineering expertise to analyze and solve problems in biology and medicine in order to enhance health care. Students involved in biomedical engineering learn to work with living systems and to apply advanced technology to the complex problems of medical care. Biomedical engineers work with other health care professionals including physicians, nurses, therapists and technicians toward improvements in diagnostic, therapeutic and health delivery systems. Biomedical engineers may be involved with designing medical instruments and devices, developing medical software, tissue and cellular engineering, developing new procedures or conducting state-of-the-art research needed to solve clinical problems.

There are numerous areas of specialization and course work within biomedical engineering. These include:

  1. Bioinstrumentation: the application of electronics and measurement techniques to develop devices used in the diagnosis and treatment of disease, including heart monitors, intensive care equipment, cardiac pacemakers and many other electronic devices.
  2. Biomaterials: the development of artificial and living materials used for implantation in the human body, including those used for artificial heart valves, kidney dialysis cartridges, and artificial arteries, hips and knees.
  3. Biomechanics: the study of motion, forces and deformations in the human body, including the study of blood flow and arterial disease, forces associated with broken bones and their associated repair mechanisms, mechanisms of blunt trauma including head injuries, orthopedic systems, and the forces and movement associated with human joints such as the knee and hip.
  4. Tissue and cellular engineering: the application of biochemistry, biophysics and biotechnology toward the development of new cellular and tissue systems and an understanding of disease processes, including development of artificial skin and organs, cell adherence to artificial materials to prevent rejection by the body, and the development of new genetic cellular systems to treat diseases.
  5. Medical imaging: the development of devices and systems to image the human body to diagnose diseases, including the development and data processing of the CAT scan, MRI (magnetic resonance imaging), medical ultrasound, X-ray and PET (positron emission tomography).
  6. Rehabilitation and human factors engineering: the development of devices and prosthetics to enhance the capabilities of disabled individuals, including design of wheelchairs, walkers, artificial legs and arms, enhanced communication aids, and educational tools for people with disabilities.

A unique aspect to the undergraduate biomedical engineering is the practicum series, EGRB 101 and EGRB 301, which involves biomedical engineering students participating in medical rounds at the VCU Medical Center’s MCV Hospitals, in medical research laboratories throughout the medical center and the Virginia BioTechnology Research Park, and in medical seminars, case studies and medical laboratories. This unique opportunity is the only one of its kind in the nation and involves the cooperation of the VCU Medical Center, one of the nation’s largest and most prestigious medical centers.

Student learning outcomes

  1. An ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
  2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
  3. An ability to communicate effectively with a range of audiences
  4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
  5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
  6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies